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Preface

The book is a teaching resource produced as part of the project “Innovative Open Source
Courses for Computer Science”. It is dedicated to teachers, students and people interested
in gaining or extending their knowledge in the use Wireless Signal Processing in GNU
Radio Environment.

GNU Radio is a free and open source software development toolkit that provides
signal processing blocks to implement Software Defined Radios (SDRs). It is a highly
modular, “flowgraph”-oriented framework, that comes with a large set of existing blocks.
GNU Radio can be used with readily-available low-cost external RF hardware (such as
RTL-SDR or HackRF) to create software-defined radios. It is a great tool to be used at
any university course related with wireless/radio signal processing. Presented examples
could be easily built and run and form a solid base for further experimentation.
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6 Chapter 1

What is GNU Radio
and Why it is Worth to Use it

GNU Radio [1] is a free, open source, universal software toolkit based on C++ and Python,
that enables DSP applications to be created without knowledge of a programming lan-
guage. GNU Radio provides just signal processing blocks, thus allowing to implement
software-defined radios.

It supports numerous devices and external interfaces, so it can be used with low cost
RF hardware (such as RTL-SDR receiver or HackRF transceiver) allowing to create Soft-
ware Defined Radios, or even without any piece of hardware in a simulation-like manner.
GNU Radio is very popular in wide range of applications, starting from academia and
R&D through industry and government to hobbyist environments. It is easy to deploy in
all the applications demanding on wireless communications research.

In traditional approach, the RF engineer developed radio communications devices by
creating a specific circuits for detection of one RF signal class. It had to be implemented
as a specific integrated circuit that would be able to make decoding and/or encoding
process of that particular transmission possible and at the end to debug all these steps
using costly equipment.

Software-Defined Radio (SDR) approach takes the analog signal processing and
moves it, as far as it is physically and economically possible and feasible, to process the
RF signals directly on a computer using specialized software algorithms instead of using
costly hardware.

It is of course possible to utilize a radio device which is connected to the computer,
in a program that is composed of numerous signal processing algorithms merged to-
gether. However it is a waste of time and energy to re-implement basic and well-known
operations on radio signals like filtering or mixing. It is much more efficient to use
highly optimized and peer-reviewed algorithms’ implementations rather than writing
them from scratch. Moreover the program is scalable on multi-core architecture and run
on an energy-efficient embedded devices as well. And there is no need to create own
GUIs. It is GNU Radio, a framework powering the world of RF signal processing world
today.

1.1 A Flowgraph-Based Approach to Digital Signal
Processing

GNU Radio offers a universal software library for different devices with easy ways to
expand it. A ,GNU Radio Companion” (GRC) is an IDE-like software environment that
simplifies creating and running so-called flowgraphs, a complete graph of blocks. Fig.
1.1 shows an example of flowgraph.
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Figure 1.1: GNU Radio — seven blocks connected together form a flowgraph

However, GNU radio programs can be run with or without user interface and also

standalone without GRC. General structure of a flowgraph is based on the flow of the
signal from a Source to a Processing Block(s) and then to a Sink. Sources and/or sinks
can be SDR devices, files, audio devices and even network services such as TCP/UDP that
allow to send signals over the networks. Two groups of the blocks (Sources and Sinks)
building flowgraphs are presented in a subchapter 1.2.

GNU Radio framework allows developing these processing blocks and creating flow-
graphs, which comprise radio processing applications. Existing blocks could be combined
into a high-level flowgraph that does something as complex as receiving digitally modu-
lated signals.

In GNU Radio framework individual processing stages such as filtering, correction,
analysis, detection etc. are represented by processing blocks; these blocks are connected
using simple flow-indicating arrows — see example in Fig. 1.2.

Signal Source
Sample Rate: 32k
Waveform: Cosine
[ Frequency: 1k
Amplitude: 900m
Offset: 0

Audio Sink
Sample Rate: 32k

Figure 1.2: GNU Radio — two blocks (Signal Source and Audio Sink) connected with an arrow
showing flow of the signal data



1.2 Most Popular GNU Radio Blocks

GNU Radio comes with a large set of existing blocks. Most popular ones are presented
below and an index to all of them can be found in Block Docs.

- Waveform Generators — Subtract
— Constant Source « Channel Models
— Noise Source — Channel Model
— Signal Source (e.g. Sine, _ Fading Model
Square, Saw Tooth)
— Dynamic Channel Model

+ Modulators — Frequency Selective Fading

- AM Demod Model
— Continuous Phase Modulation « Filters
- PSKMod/ Demod — Band Pass / Reject Filter
— GFSK Mod / D d
od/Demo - Low / High Pass Filter
— GMSK Mod / Demod .
- IIR Filter
- QAM Mod / D d
Q ° eme — Generic Filterbank
— WBFM Receive Hilbert
- Hilber
— NBFM Receive
— Decimating FIR Filter
* Instrumentation - Root Raised Cosine Filter
— Constellation Sink - FFT Filter
— Frequency Sink « Fourier Analysis
- Histogram Sink
. - FFT
— Number Sink
— LogP FFT
— Time Raster Sink 08 Tower
_ Time Sink - Goerfzel (Resamplers)
_ Waterfall Sink — Fractional Resampler

— Polyphase Arbitrary Resampler

* Math Operators — Rational Resampler

— Abs (Synchronizers)

- Add — Clock Recovery MM
- Complex Conjugate — Correlate and Sync

- Divide — Costas Loop

- Integrate — FLL Band-Edge

- Logl10 — PLL Freq Det

— Multiply — PN Correlator

- RMS — Polyphase Clock Sync



Using these blocks, many standard tasks, like signal normalization, synchronization,
measurements, and visualization can be done by just connecting the appropriate block
to your signal processing flow graph.

It is also possible to write out own blocks, that either combine existing blocks with
some intelligence to provide new functionality together with some logic, or to combine
operations on the input and output data. Thus, GNU Radio is mainly a framework for the
development of signal processing blocks and their interaction. It comes with an extensive
standard library of blocks, and there are a lot of systems available that a developer might
build upon. However, GNU Radio itself is not a software that is ready to do something
specific - it’s the user’s job to build something useful out of it, though it already comes
with a lot of useful working examples. Think of it as a set of building blocks [2].

1.2.1 Default Blocks

The most important blocks that are automatically created in every GNU Radio project
are: Variable samp_rate and Options top_block.

The Variable samp_rate block sets the global sampling rate for the whole project,
the default here is 32000 samples/second, but the value can be adjusted to meet the needs
of specific project. All new blocks that will be added to the project later will use this
sampling rate as the default value, see Fig. 1.3.

Properties: Variable (<]

General Advanced  Documentation
D samp_rate
Value 32000

OK Cancel

Figure 1.3: GNU Radio — Variable samp_rate block

In the Options top_block block, the values that are global for the project are speci-
fied: Title, Author, Description, Canvas Size (width and length of the workspace in pixels),
Generate Options (QT GUL, WX GUI, No GUI (No GUI should be used), Hier Block (a hi-
erarchical block without GUI, which can be included in other projects), Hier Block with
QT GUI (hierarchical block with QT GUI, which can be included in other projects)), Run
(Autostart or Off), Realtime Scheduling (On or Off), QSS Theme (path to a .gss theme file
that defines how the project’s GUI should look like), see Fig. 1.4.



Properties: Options

General Advanced  Documentation
D top_block
Title
Author
Description

Canvas Size

| ““

Generate Options QT GUI
Run Autostart b4
Max Number of Output |0
Realtime Scheduling | OFf 2

Q55 Theme

OK Cancel ApPP

Figure 1.4: GNU Radio — Options top_block block

Variables: any variables can be created with global visibility for the current project.
It is done similar to the Variable samp_rate block.

1.3 Signal Data Types in GNU Radio

Every signal processing block in GNU Radio has an input/output port(s) that are able to
receive/send signal(s) of predefined data type(s). For each signal data type GNU Radio
shows the ports colored in the predefined way. The data types can be found in GNU
Radio Companion by clicking Help -> Types. The Fig. 1.5 shows all the signal data types
along with the colors associated with them.

The most often used signal data types are blue Complex Float 32 and orange Float
32. Common signals are also yellow Integer 16 and purple Integer 8. Two ports of
different blocks have to be compatible in sense of signal data types. That means, that
only Float 32 output port of one processing block can be connected to Float 32 input
port of another processing block. If the ports are incompatible, the arrow connecting
two block will be red, indicating a data mismatch error. It could be resolved by changing
the signal data types at one of the blocks.

1.4 Sources and Sinks in GNU Radio

As source blocks in GNU Radio we assume the blocks that provide data in various formats
such as Complex, Complex Float, Float, Integer or Byte. The format in which the data
is provided at the output can be selected in the options of the block and is indicated by
the color of the small rectangle on the right side of the respective block. Only blocks
that use the same data format can be connected to each other. If this is not the case, the
arrows connecting the blocks to each other are displayed in red and the program cannot

10



6 Color Mapping

Complex Integer 16

Integer 64

Integer 16

Async Message
Bus Connection
Wildcard

(clozesy)

Figure 1.5: GNU Radio signal data types

be executed until the error is corrected. If blocks are to be connected to one another for
which it is not possible to select the same data format in the options, the data format
converting block has to be inserted. These can be found in the right panel of GRC under
Type Converters.

1.4.1 GNU Radio Sources
1. Null Source — Fig. 1.6
. Noise Source — Fig. 1.7
. Signal Source — Fig. 1.8
. File Source — Fig. 1.9
. TCP Source — Fig. 1.10
. UDP Source — Fig. 1.11
. Audio Source — Fig. 1.12
. WAV File Source — Fig. 1.13
. UHD: USRP Source — Fig. 1.14

O 00 N N R W N

10. osmocom Source — Fig. 1.15
11. RTL-SDR Source — Fig. 1.16
12. Funcube Dongle — Fig. 1.17

11



Properties: Null Source

General | Advanced | Documentation

D [blocks_null_source_0 |
Output Type | Complex 3

]
]

Vec Length
Num Qutputs

Bus Connections | [[

Source - out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.6: GNU Radio sources — Null Source

Signal Source

Properties: Signal Source

General| Advanced Documentation

D |analog_sig_source_x_0 ]
Output Type | Complex 3
Waveform
Frequency
Amplitude
Offset

Source -out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.8: GNU Radio sources — Signal Source

Noise Source
Nofse Type: Gaussian
Amplitude: 1

Seed: 0

Properties: Nolse Source

General|| Advanced  Documentation

D |analog_noise_source x_0

Output Type | Complex

Noise Type Gaussian v
s GO

Source - out(0):
Portis not connected.

| ok || cancel Apply.

Figure 1.7: GNU Radio sources — Noise Source

(General | Advanced

D |blocks_file_source_0 ]
e ( Jl-)
Output Type | complex
Repeat |Yes 2

Source-out(0):
Port s not connected.

| ok | cancel Apply

Figure 1.9: GNU Radio sources — File Source

Source-out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.10: GNU Radio sources — TCP Source

12

e s
1P Address: 127.0.01
General | Advanced | Documentation Pk 2 e General | Advanced | Documentation
D |blks2_tcp_source_0 ) Null Pkt is EOF: True D [blocks_udp_source 0 ]
OutputType | Complex : Outputype | Complex :
gy P
port o Pt [Esa

Source - out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.11: GNU Radio sources — UDP Source



General | Advanced | Documentation

D audio_source_0
OK to Block |Yes 2

Device Name

Source - out(0):
Port is not connected.

| ok || cancel Apply.

Figure 1.12: GNU Radio sources — Audio
Source

UHD: USRP Source:
] Seme Rate (sps: 220

Ch: Center Freq (Hz): 0
Cho: Gain Value: 0

Properties: UHD: USRP Source

General | RF Options | FE Corrections | Advanced Documentation

D |uhd_usrp_source_0 h
Output Type | Complex floats2

Wire Format Automatic S

Stream args

Stream channels

Device Address
Device Arguments
sync |domtsync 3

Clock Rate (Hz)

Default -

Num Mboards. v

1

Source - 0uL(0):
Port is not connected.

| ok || cancel Apply.

Figure 1.14: GNU Radio sources — UHD: USRP
Source

RTL-SDR Source
‘Sample Rate (sps): 32k
Cho: Frequency (1

Properties: RTL-SDR Source

General| Advanced  Documentation

General | Advanced | Documentation
D |blocks_wavfile_source_0 ]
rie l ]
Repeat |ves 3

Source - out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.13: GNU Radio sources — WAV File
Source

‘osmocom Source
‘Sample Rate (sps): 32k
Cho: Frequeney (Hz): 1001
Cho: Freq. Corr. (ppm): 0

Properties: osmocom Source

General| Advanced | Documentation

ChO: DC Offset Mode: Off D |osmosdr_source_0 A
Cho: 1 Balance Mode: Off
Cho: Gain Mode: Manual Output Type complex Float32

: 1

&) L
sync |don'tsync 2
mmbesrts [ []
Mbo: Clock Source | Default -
Mbo: Time Source | Default e

Num Channels |1 -

cho:

Device Arguments

Source-out(0):
Portis not connected.

| oK | cancel Apply

Figure 1.15: GNU Radio sources — osmocom
Source

Funcube Dongle Source
Device Name: huel

Properties: Funcube Dongle Source

General | Advanced | Documentation

Cho: Freg. Corr. (ppm): 0

ChO: DC Offset Mode: O D [rtlsdr_source_ 0 K
Cho: 1Q Balance Mode: Off
Cho: Gain Mode: M: Output Type | Complex float32

sync | don'tsync
Num Mboards 1 v
MbO: Clock Source  Default v
Mb0: Time Source  Default v
Num Channels 1 v

Source - out(0):
Port s not connected.

:20
Cho: BB Gain (dB): 20

| ok || cancel Apply

Figure 1.16: GNU Radio sources — RTL-SDR
Source

Frequency (Hz): 145.5M
2

D
Device Name

Frequency (Hz)

1Q gain batance: 1 LNA Gain (dB)

Mixer Gain (dB)
Frequency corr. (ppm)
DC | offset
DC Q offset
10 phase balance

1Q gain balance

Source - out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.17: GNU Radio sources — Funcube
Dongle Source
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1.4.2 GNU Radio Sinks
Null Sink — Fig. 1.18
File Sink — Fig. 1.19
TCP Sink — Fig. 1.20

—_

TCP Server Sink — Fig. 1.21
. UDP Sink — Fig. 1.22

Audio Sink — Fig. 1.23
WAV File Sink — Fig. 1.24
UHD: USRP Sink — Fig. 1.25

Y ® N ok WD

osmocom Sink — Fig. 1.26

Properties: Null Sink - File Sink Properties: File Sink

|General|| Advanced | Documentation B unoutere: or General|| Advanced | Documentation
— Append fle: Overurite | |
D |blocks_null_sink_0 J D |blocks _file_sink_0 J
Input Type | cComplex 3 | File [ |

Bus Connections  [[[0,],]

Unbuffered |off v
Append file |overwrite v
sink -in(0): sink -in(0):
Port is not connected. Portis not connected.
OK || cancel | Apply OK || cancel || Apply

Figure 1.18: GNU Radio sinks — Null Sink Figure 1.19: GNU Radio sinks — File Sink

TCP sink
Address: 127.00.1

TCP Server sink - .
Properties: TCP Sink Destination 1p Address: Properties: TCP Server Sink

W ocSinacion por:

s Clent (General| Advanced | pocumentation e General | Advanced  Documentation
D [blks2_tcp_sink_0 | D | blocks_tcp_server_sink_0 |
Input Type | complex ;| Input Type | Complex 3|
Mode ‘Client - Nonblocking Mode ‘L‘
sink - in(0): Sink -in(0):

Portis not connected. Port s not connected.

Param - Destination Port(port):
Value ™ cannot be evaluated:
Cannot evaluate empty statement.

OK J| Cancel || Apply ok || cancel || Apply

Figure 1.20: GNU Radio sinks — TCP Sink gl:gl;:‘e 1.21: GNU Radio sinks — TCP Server
in
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UDP Sink
Destination IP Address:

Properties: UDP Sink
General|| Advanced | Documentation

General | Advanced | Documentation

D blocks_udp_sink_0 ] D audio_sinl

Destination Port
Payload Size
Send Null Pkt as EOF

OK to Block. |Yes 3

Vec Length

Sink-in(0):
Portis not connected.

Sink -in(0):

Port is not connected.
Param - Destination Port(port):

Value " cannot be evaluated:

Cannot evaluate empty statement.

| ok || cancel Apply [ ok || cancel Apply

Figure 1.22: GNU Radio sinks — UDP Sink Figure 1.23: GNU Radio sinks — Audio Sink

Wav File Sink

Properties: Wav File Sink

UHD: USRP Sink.

Bl sampie Rate:52¢

e General| Advanced | Documentation occonsriuatin General|| RF Options | Advanced | Documentation
D |blocks_wavfile_sink_0 ] TSB tag name: D |uhd_usrp_sink_0 ]
ile | Input Type | Complex float32 :
aispersampie S ——
i
Sync |don'tsync 2
e
sink-in(0): Sink -in(0):
Portis not connected.

Port is not connected.

| ok || cancel Apply

| ok || cancel Apply

Figure 1.24: GNU Radio sinks — WAV File Sink ?:gl;:e 1.25: GNU Radio sinks — UHD: USRP
in

(General | Advanced | Documentation
D |osmosdr_sink_0 A
Input Type | complex floats2 :
Sync |dontsync =
Num Mboards 1 v
Mb0: Clock Source  Default v
Moo: TmeSource [Default | v
Numchannels (1 v

Sink-in(0):
Port is not connected.

| oK | Cancel Apply

Figure 1.26: GNU Radio sinks — osmocom Sink



1.4.3 GNU Radio Instrumentation Sinks
1. QT GUI sinks

(a) QT GUI Sink — Fig. 1.27

(b) QT GUI Constellation Sink — Fig. 1.28
(c) QT GUI Frequency Sink — Fig. 1.29
(d) QT GUI Histogram Sink — Fig. 1.30
(e) QT GUI Number Sink — Fig. 1.31

(f) QT GUI Time Raster Sink — Fig. 1.32
(g) QT GUI Time Sink — Fig. 1.33

(h) QT GUI Vector Sink — Fig. 1.34

(i) QT GUI Waterfall Sink — Fig. 1.35

2. WX GUI sinks

(a) WX GUI Constellation Sink — Fig. 1.36
(b) WX GUI FFT Sink — Fig. 1.37

(c) WX GUI Histo Sink — Fig. 1.38

(d) WX GUI Number Sink — Fig. 1.39

(e) WX GUI Scope Sink — Fig. 1.40

(f) WX GUI Terminal Sink — Fig. 1.41

(g) WX GUI Waterfall Sink — Fig. 1.42

°'°‘"45K‘"k Properties: QT GUI Sink Properties: QT GUI Constellation Sink
| |General| Advanced Documentation |General| Trigger Config Advanced Documentation
Type | Complex | Type

Name

s R

D |qtgui_sink x_0 Iy [} |qtgui_const_sink_x_0 J
Number of Points

Window Type | Blackman-harris v Grid
Sondith () Samp_fate | ¥min
ShowRFFreg  |No 3 X min
Plot Frequency \Dni o Xmax

Number of Inputs

sink-in(0): !
Portis not connected. Update Period
GUI Hint

Ok || cancel || Apply ok || cancel || apply

Figure 1.27: GNU Radio instrumentation sinks —  Figure 1.28: GNU Radio instrumentation sinks —
OT GUI Sink QT GUI Constellation Sink
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QT GUI Frequency Sink

Properties: QT GUI Frequency Sink

Trigger  Config Advanced Documentation

Bandwidth (Hz): 32k

i} |qtgui_freq_sink x_0

Complex =

Name
FFT Size
Window Type Blackman-harris 2

Grid No :

Autoscale No :

Average None &

—_—

Number of Inputs

ok Cancel Apply

Figure 1.29: GNU Radio instrumentation sinks —
OT GUI Frequency Sink

Properties: QT GUI Number Sink
Config | Advanced | Documentation

QT GUI Number Sink.
Autoscal

0 ver

Graph Type: Horizontal

L) qtgui_number_sink_0 e
Input Type Float 3
Autoscale No

wesse CU
Graph Type Horizontal 2

o

S |\
Sink-in(0):

Portis not connected.

oK Cancel Apply

Figure 1.31: GNU Radio instrumentation sinks —
OT GUI Number Sink

Q7 GUI Time sink

Number of Points: 1024k

W surmple Rate: 2
Autoscale: o

Prope:

r Config Advanced Documentation
k x_0 )l

D |qtgui_time s
Type

Name

Complex

Y Axis Label
¥ Axis Unit
Number of Points
Sample Rate
Grid
Autoscale

Ymin

Y max
Number of Inputs
Update Period

Disp. Tags Yes 3

G |

oK Cancel Apply

Figure 1.33: GNU Radio instrumentation sinks —

OT GUI Time Sink

QT GUI Histogram Sink
Number of Points: 1.024k
Number of Bins: 100
Autoscale: Yes

Properties: QT GUI Histogram Sink

Config Advanced Documentation

Accumulate: No D |qtgui_histogram_sink x_0 ]l
Type Float =
st 0280
Grid No
Autoscale Yes
Accumulate No 3
Min is.

Max x-axis
Number of Inputs
Update Period

GUI Hint.

oK Cancel Apply

Figure 1.30: GNU Radio instrumentation sinks —
OT GUI Histogram Sink

QT GUI Time Raster Sink
===

Num. Rows:

Num, Cols:

nk

Sample Rate
Num. Rows
Num. Cols
Grid
Int. min
Int. max

Multiplier

Param - Num. Rows(nrows):
Value " cannot be evaluated:
Cannot evaluate empty statement.

Param - Num. Cols(ncols):

Value ™" cannot be evaluated:
Cannot evaluate empty statement.

oK Cancel Apply

Figure 1.32: GNU Radio instrumentation sinks —

QT GUI Time Raster Sink

QT GUI Vector Sink.
Vector Size: 1,024k

X-Axis Start Value: 0
X-Axis Step Value: 1

Properties: QT GUI Vector

Config Advanced Documentation

I xAxis et -z o
Y-Axis Label: y-Axis
XeAxis Units: Name
Vi U ector sie
XcAxis Start Value
XoAxis Step Value
XoAxis Label
YoAuis Label
Yehxis Units
Ysis Units
Ref Level
Grid
sink - in(0):

Port is not connected.

oK Cancel Apply

Figure 1.34: GNU Radio instrumentation sinks —
OT GUI Vector Sink
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QT GUI Waterfall Sink
FFT Size: 1.024k

B conter Freauency (zr:0

Bandwidth (Hz): 32k

Properties: QT GUI Waterfall Sink

Config Advanced Documentation

D |qtgui_waterfall_sink x_0 Nl
Type Complex -
Name
FFT Size
Window Type

Center Frequency (Hz)
Bandwidth (Hz)
Intensity Min

Intensity Max

Grid No
Number of Inputs
Update Period

GUI Hint,

ShowMsg Ports | No

Apply

OK Cancel

Figure 1.35: GNU Radio instrumentation sinks —
OT GUI Waterfall Sink

WX GUI FFT Sink
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20 Chapter 2

Selected Radio Signal Applications
in GNU Radio

This section contains proposals of the receivers and transmitters for three basic analog
modulations: Amplitude Modulation (AM), Frequency Modulation (FM) and Single Side
Band (SSB) Modulation. Proposed receivers and transmitters do not utilize real RF hard-
ware (with the exception of the last one example), the RF signal from the transmitter to
the receiver is sent via a network socket using ZMQ blocks. All of the presented propos-
als are based on the ideas shown in official GNU Radio Tutorials [3], however they are
made from scratch showing all the parameters necessary to make the flowgraphs running
withour errors. These examples were tested under GNU Radio 3.7.11.

The descriptions of the modulations schemes are omited here since they are widely
spread in numerous sources.

2.1  Amplitude Modulation (AM)

This subsection presents Amplitude Modulation (AM) Transmitter and Receiver.

2.1.1 AM Transmitter

AM transmitter flowgraph is shown in Fig. 2.1. The parameters of the building blocks
are following:

« Variable:
— samp_rate = 768 kHz

(gives the 48 kHz carrier frequency 16 samples in every cycle)

« Audio Source:

— Sample Rate = 48 kHz
» Repeat:

— Interpolation = 16

(boosts the audio sample rate to the system sample rate)
« QT GUI Range defines Audio gain (= volume variable) controls
+ Multiply Const:

— Constant = volume variable



« Add Const:
— Constant = 1

(creates AM carrier in the absence of the audio signal)

« Signal Source:

— Frequency = 48 kHz
— Amplitude = 1

(generates carrier signal frequency)
« QT GUI Time Sink:
- Number of Points = 4096

(shows visual representation of the transmitted signal)

+ ZMQ PUB Sink:
— Address = tcp://127.0.0.1:50222

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the AM signal carrying
audio signal recorded with microphone. QT GUI Time Sink will show changing pattern
of the signal, modulation level could be adjusted with the volume control in QT GUI
Range block. The output signal can be demodulated by the receiver described in the next
subsection.

2.1.2 AM Receiver

AM receiver flowgraph is shown in Fig. 2.2. The parameters of the building blocks are
following:

« Variable:

— samp_rate = 768 kHz
« Variable:

— decim = 16

(defines the decimation factor to reduce the incoming sample rate by 16 in order
to get an audio sample rate of 48 kHz for the Audio Sink block)

« ZMQ SUB Source:
- Address = tcp://127.0.0.1:50222

(the signal is received from a network data socket connected to the transmitting
section on the same computer)
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Figure 2.1: GNU Radio — AM transmitter flowgraph
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« Frequency Xlating FIR Filter:
— Type = Float->Complex (Real Taps)

— Decimation = decim

— Taps = firdes.low_pass(1,samp_rate,samp_rate/(2*decim), 2000)

Center Frequency = 48 kHz

Sample Rate = samp_rate
(performs frequency translation, filtering and decimation)
« AGC (Automatic Gain Control):
— default values
(adjusts the input signal to the given reference level)
« Complex to Mag:
- no values

(calculates magnitude of the complex samples in order to restore original modula-
tion signal)

« Band Pass Filter:
- FIR Type = Float->Float (Real Taps)(Decim)

— Decimation = 1

- Gain=1

Sample Rate = (int)(samp_rate/decim)
Low Cutoff Freq = 500 Hz

- High Cutoff Freq = 6 kHz

— Transition Width = 400

« QT GUI Range defines Audio gain (= volume variable) controls
« Multiply Const:

— Constant = volume variable
« QT GUI Time Sink:

— Sample Rate = (int)(samp_rate/decim)
— Number of Points = 256

(shows visual representation of the received signal)

« Audio Sink:

— Sample Rate = 48 kHz
— OK to Block = Yes

After compiling and executing the flowgraph, it will receive the AM signal from a net-
work data socket connected to the transmitting section described in the previous subsec-
tion. QT GUI Time Sink will show changing pattern of the signal.
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2.2 Frequency Modulation (FM)
This subsection presents Narrow Band Frequency Modulation (NBFM) Transmitter and
Receiver.

2.2.1 NBFM Transmitter

FM transmitter flowgraph is shown in Fig. 2.3. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 48 kHz
« Variable:
— usrp_rate = 576 kHz
« Variable:
— if_rate = 192 kHz
« QT GUI Range defines Audio gain (= audio_gain variable) controls

« QT GUI Chooser defines three PL tones — pl_freq variable: 0 Hz, 67 Hz and 71.9 Hz
« Audio Source:
— Sample Rate = 48 kHz
« Band Pass Filter:
— Decimation = 1
- Gain=1
— Sample Rate = samp_rate
— Low Cuttoff Freq = 300 Hz
- High Cutoff Freq = 5 kHz
— Transition Width = 200
- Window = Hamming

- Beta =6.76
« Multiply Const:

- audio_gain variable
« Signal Source:

— Sample Rate = 48 kHz
- Waveform = Sine

— Frequency = pl_freq
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— Amplitude = 0.150
— Offset=0

« NBFM Transmit:

Audio Rate = 48 kHz
Quadrature Rate = if_rate
Tau = 0.000075

— Max Deviation = 5000

Preemphasis High Corner Freq = -1
« QT GUI Sink:

— FFT Size = 1024

Center Frequency = 0 Hz
Bandwidth = if rate
Update Rate = 10

« Low Pass Filter:

Decimation = 1

- Gain=1

— Sample Rate = if_rate
Cutoff Freq = 5 kHz
Transition Width = 2000

Window = Hamming

Beta = 6.76

» Repeat:
— Interpolation = 3
(multiplies if_rate in order to get usrp_rate)
+ ZMQ PUB Sink:
— Address = tcp://127.0.0.1:49999

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the FM signal carrying
audio signal recorded with microphone. Modulation level could be adjusted with the
volume control in QT GUI Range block. The output signal can be demodulated by the
receiver described in the next subsection.
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Figure 2.3: GNU Radio — FM transmitter flowgraph
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2.2.2 NBFM Receiver

FM receiver flowgraph is shown in Fig. 2.4. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 576 kHz
« Variable:
— rf_decim =3
+ Band-pass Filter Taps:
— ID = channel_filter
— Tap Type = Complex
- Gain=1
— Sample Rate = samp_rate
— Low Cuttoff Freq = -3 kHz
- High Cutoff Freq = 3 kHz
— Transition Width = 200
- Window = Hamming
— Beta = 6.76
(defines Filter Taps for the FFT Filter block)
« QT GUI Range defines VOLume level (= VOL_level variable) controls
« QT GUI Range defines SQueLch level (= SQL_level variable) controls
« ZMQ SUB Source:

- Address = tcp://127.0.0.1:49999

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

- FFT Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = rf _decim
— Taps = channel _filter
— Num. Threads = 1
« Simple Squelch:

— Threshold = -50 dB
— Alpha=1
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« NBFM Receive:

Audio Rate = 48 kHz
Quadrature Rate = 192 kHz
Tau = 0.000075

— Max Deviation = 5000

« Multiply Const:

— VOL_level variable
« Audio Sink:

— Sample Rate = 48 kHz
« QT GUI Waterfall Sink:

— FFT Size = 1024
— Center Frequency = 0 Hz

— Bandwidth = samp_rate

(shows a waterfall spectrum display with visual representation of the received sig-
nal)

After compiling and executing the flowgraph, it will receive the FM signal from a network
data socket connected to the transmitting section described in the previous subsection.
QT GUI Waterfall Sink will show changing pattern of the signal. GUI windows with
Volume and Squelch controls allow for controling received signal.

2.3 Single Side Band (SSB) Modulation

This subsection presents Single Side Band (SSB) Modulation Transmitter and Receiver.

2.3.1 SSB Transmitter

SSB transmitter flowgraph is shown in Fig. 2.5. The parameters of the building blocks
are following:

« Variable:

- samp_rate = 192 kHz
« Variable:

— audio_rate = 48 kHz
« Variable:

— carrier_freq = 16 kHz
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Figure 2.4: GNU Radio — FM receiver flowgraph
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« Variable:
- interp = 4
« QT GUI Range defines Audio gain (= volume variable) controls
« Audio Source:
— Sample Rate = samp_rate
« Multiply Const:
— volume variable
« Repeat:
— Interpolation = interp variable
(boosts the audio sample rate to the system sample rate)
« Constant Source:
— Constant = 0
« Float to Complex
(converts float data into complex numbers)

« Signal Source:

Sample Rate = samp_rate

Waveform = Sine

— Frequency = carrier_freq
— Amplitude = 1
- Offset=0

« Multiply
(creates modulated SSB signal)
« Band Pass Filter:

— Decimation = 1

- Gain =1

— Sample Rate = samp_rate

— Low Cuttoff Freq = 16.3 kHz
- High Cutoff Freq = 19 kHz
— Transition Width = 200

- Window = Hamming

— Beta=6.76

(creates SSB signal by passing one (upper) sideband only and rejecting the other —
the filter method)
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« QT GUI Frequency Sink:

- FFT Size = 1024
— Center Frequency = 0 Hz

— Bandwidth = samp_rate
« ZMQ PUSH Sink:
— Address = tcp://127.0.0.1:50333

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the SSB signal carrying
audio signal recorded with microphone. QT GUI Frequency Sink will show changing
pattern of the signal, modulation level could be adjusted with the volume control in QT
GUI Range block. The output signal can be demodulated by the receiver described in the
next subsection.

2.3.2 SSB Receiver

SSB receiver flowgraph is shown in Fig. 2.6. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 192 kHz
« Variable:
— audio_rate = 48 kHz
« Variable:
— carrier_freq = 16 kHz
+ Variable:
- decim =4
+ QT GUI Range defines Tuning (= tuning variable) controls:

Start = 11000

— Stop = 21000

Step = 100

Default Value = 17500

« QT GUI Range defines Fine Tuning (= bfo variable) controls:

— Start=0
- Stop = 3000
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Figure 2.5: GNU Radio — SSB transmitter flowgraph
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- Step =10
— Default Value = 1500

« QT GUI Range defines Audio gain (= volume variable) controls:

- Start =0
- Stop=1
- Step = 0.050

Default Value = 0.500

« QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)
« ZMQ PULL Source:

— Address = tcp://127.0.0.1:50333

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

« Frequency Xlating FIR Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = decim
— Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

— Center Frequency = tuning

Sample Rate = samp_rate

(performs frequency translation, filtering and decimation)

« Complex to Float:
— no values

(converts complex numbers into floats)

« Signal Source:

Sample Rate = audio_rate
- Waveform = Cosine

— Frequency = bfo

— Amplitude = 1

— Offset=0
« Multiply:
— no values

(multiplies signals)
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« Multiply Const:
— Constant = 1
o Add:
— no values
(adds signals)
« Multiply Const:
— Constant = volume variable
« Audio Sink:
— Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a net-
work data socket connected to the transmitting section described in the previous sub-
section. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.3.3 SSB Receiver — 1I/Q Signal from the File

The flowgrpah of the SSB receiver taking I/Q signal from the file is shown in Fig. 2.7. The
parameters of the building blocks are following:

+ Variable
- samp_rate = 256 kHz
+ Variable
— audio_rate = 32 kHz
« Variable
— carrier_freq = 53 kHz
+ Variable
- decim =8
+ QT GUI Range defines Tuning (= tuning variable) controls:

Start = 48000

Stop = 58000

Step = 100

Default Value = 51500
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Figure 2.6: GNU Radio — SSB receiver flowgraph
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QT GUI Range defines Fine Tuning (= bfo variable) controls:

— Start =0
— Stop = 3000
- Step =10

Default Value = 1500

QT GUI Range defines Audio gain (= volume variable) controls:

- Start =0
- Stop=1
- Step = 0.050

Default Value = 0.200

QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)

File Source:

— File = ssb_lsb_256k_complex2.dat
- Repeat = yes

(the signal is taken from the file, it is necessary to download it from https: //www.
csun.edu/~skatz/katzpage/sdr_project/sdr/ssb_lsb_256k_complex2

.dat.zip)

Multiply Const:
— Constant = 0.0001

Frequency Xlating FIR Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = decim

— Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

Center Frequency = tuning

Sample Rate = samp_rate
(performs frequency translation, filtering and decimation)
Complex to Float:
— no values
(converts complex numbers into floats)
Signal Source:

— Sample Rate = audio_rate
- Waveform = Cosine

- Frequency = bfo
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— Amplitude = 1

— Offset=0
« Multiply:
— no values

(multiplies signals)

. Add:
— no values

(adds signals)
« Multiply Const:

— Constant = volume variable

Audio Sink:

— Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a pro-
vided file. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.4 RTL-SDR Based WFM Receiver

In Fig. 2.8 a simple example of the broadcast WEM receiver is presented. It consists of
RTL-SDR Source block as a radio signal source, FM Demod block as a FM demodulator,
Multiply Const block supplying a volume value for the audio level and Audio Sink block
that allows playing audio signal.

The parameters of the building blocks are following:

« Variable

— samp_rate = 240 kHz
« Variable

- deviation = 75 kHz
« Variable

— audio_decim = 5

« QT GUI Range defines RF Gain (= rf_gain variable) controls:

- Start =0
- Stop =70
- Step=1

Default Value = 50
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Figure 2.7: GNU Radio — SSB receiver flowgraph — I/Q signal from the file
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« QT GUI Range defines Tuning (= tuning variable) controls:

Start = 87.9 MHz

Stop = 108.1 MHz

Step = 100 kHz

Default Value = 98 MHz

« QT GUI Range defines Volume (= volume variable) controls:

Start = 0
Stop =1
Step = 0.050

Default Value = 0.300

« RTL-SDR Source:

Sample Rate = samp_rate variable
Frequency = tuning variable

Freq. Corr. =0

DC Offset Mode = Off

IQ Balance Mode = Off

Gain Mode = Manual

RF Gain = rf_gain variable

IF Gain = 20 dB

BB Gain = 20 dB

« FM Demod:

Channel Rate = samp_rate variable

Audio Decimation = audio_decim variable
Deviation = deviation variable

Audio Pass = 15 kHz

Audio Stop = 16 kHz

Gain=1

Tau = 0.000075

+ Multiply Const:

Constant = volume variable

« Audio Sink:

40
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Figure 2.8: GNU Radio — RTL-SDR based broadcast WFM receiver
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