
Mendel University in Brno

Wireless Signal Processing
in GNU Radio Environment

Study text

Remigiusz Olejnik
West Pomeranian University of Technology in Szczecin

Project: Innovative Open Source Courses
for Computer Science Curriculum

24. 6. 2022

Reviewer: Ing. Peter Šarafín, PhD., University of Žilina, Slovakia
Project: Innovative Open Source Courses for Computer Science Curriculum
© Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
ISBN 978-80-7509-891-7 (online; pdf)
DOI https://doi.org/10.11118/978-80-7509-891-7

Open Access. This book is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International License, CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/)

Project: Innovative Open Source Courses for Computer Science Curriculum

This material teaching was written as one of the outputs of the project “Innovative Open
Source Courses for Computer Science Curriculum”, funded by the Erasmus+ grant no.
2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian University
of Technology in Szczecin (Poland) and is implemented in partnership with Mendel Uni-
versity in Brno (Czech Republic) and University of Žilina (Slovak Republic). The project
implementation timeline is September 2019 to December 2022.

Project information
Project was implemented under the Erasmus+.
Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564
Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action Type: KA203 – Strategic Partnerships for higher education

Consortium
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNĚ
ŽILINSKÁ UNIVERZITA V ŽILINE

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication reflects the views
only of the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019–2022. The content is Copyrighted and distributed
under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

4

Preface

The book is a teaching resource produced as part of the project “Innovative Open Source
Courses for Computer Science”. It is dedicated to teachers, students and people interested
in gaining or extending their knowledge in the use Wireless Signal Processing in GNU
Radio Environment.

GNU Radio is a free and open source software development toolkit that provides
signal processing blocks to implement Software Defined Radios (SDRs). It is a highly
modular, “flowgraph”-oriented framework, that comes with a large set of existing blocks.
GNU Radio can be used with readily-available low-cost external RF hardware (such as
RTL-SDR or HackRF) to create software-defined radios. It is a great tool to be used at
any university course related with wireless/radio signal processing. Presented examples
could be easily built and run and form a solid base for further experimentation.

Acknowledgments

At this point, I would like to express my gratitude to Ing. Peter Šarafín, PhD., for valuable
comments and suggestions on this text.

5

Contents

1 What is GNU Radio and Why it is Worth to Use it 6
1.1 A Flowgraph-Based Approach to Digital Signal Processing 6
1.2 Most Popular GNU Radio Blocks . 8

1.2.1 Default Blocks . 9
1.3 Signal Data Types in GNU Radio . 10
1.4 Sources and Sinks in GNU Radio . 10

1.4.1 GNU Radio Sources . 11
1.4.2 GNU Radio Sinks . 14
1.4.3 GNU Radio Instrumentation Sinks 16

2 Selected Radio Signal Applications in GNU Radio 20
2.1 Amplitude Modulation (AM) . 20

2.1.1 AM Transmitter . 20
2.1.2 AM Receiver . 21

2.2 Frequency Modulation (FM) . 25
2.2.1 NBFM Transmitter . 25
2.2.2 NBFM Receiver . 28

2.3 Single Side Band (SSB) Modulation . 29
2.3.1 SSB Transmitter . 29
2.3.2 SSB Receiver . 32
2.3.3 SSB Receiver — I/Q Signal from the File 35

2.4 RTL-SDR Based WFM Receiver . 38

6 Chapter 1

What is GNU Radio
and Why it is Worth to Use it

GNURadio [1] is a free, open source, universal software toolkit based on C++ and Python,
that enables DSP applications to be created without knowledge of a programming lan-
guage. GNU Radio provides just signal processing blocks, thus allowing to implement
software-defined radios.

It supports numerous devices and external interfaces, so it can be used with low cost
RF hardware (such as RTL-SDR receiver or HackRF transceiver) allowing to create Soft-
ware Defined Radios, or even without any piece of hardware in a simulation-like manner.
GNU Radio is very popular in wide range of applications, starting from academia and
R&D through industry and government to hobbyist environments. It is easy to deploy in
all the applications demanding on wireless communications research.

In traditional approach, the RF engineer developed radio communications devices by
creating a specific circuits for detection of one RF signal class. It had to be implemented
as a specific integrated circuit that would be able to make decoding and/or encoding
process of that particular transmission possible and at the end to debug all these steps
using costly equipment.

Software-Defined Radio (SDR) approach takes the analog signal processing and
moves it, as far as it is physically and economically possible and feasible, to process the
RF signals directly on a computer using specialized software algorithms instead of using
costly hardware.

It is of course possible to utilize a radio device which is connected to the computer,
in a program that is composed of numerous signal processing algorithms merged to-
gether. However it is a waste of time and energy to re-implement basic and well-known
operations on radio signals like filtering or mixing. It is much more efficient to use
highly optimized and peer-reviewed algorithms’ implementations rather than writing
them from scratch. Moreover the program is scalable on multi-core architecture and run
on an energy-efficient embedded devices as well. And there is no need to create own
GUIs. It is GNU Radio, a framework powering the world of RF signal processing world
today.

1.1 A Flowgraph-Based Approach to Digital Signal
Processing

GNU Radio offers a universal software library for different devices with easy ways to
expand it. A „GNU Radio Companion” (GRC) is an IDE-like software environment that
simplifies creating and running so-called flowgraphs, a complete graph of blocks. Fig.
1.1 shows an example of flowgraph.

Figure 1.1: GNU Radio — seven blocks connected together form a flowgraph

However, GNU radio programs can be run with or without user interface and also
standalone without GRC. General structure of a flowgraph is based on the flow of the
signal from a Source to a Processing Block(s) and then to a Sink. Sources and/or sinks
can be SDR devices, files, audio devices and even network services such as TCP/UDP that
allow to send signals over the networks. Two groups of the blocks (Sources and Sinks)
building flowgraphs are presented in a subchapter 1.2.

GNURadio framework allows developing these processing blocks and creating flow-
graphs, which comprise radio processing applications. Existing blocks could be combined
into a high-level flowgraph that does something as complex as receiving digitally modu-
lated signals.

In GNU Radio framework individual processing stages such as filtering, correction,
analysis, detection etc. are represented by processing blocks; these blocks are connected
using simple flow-indicating arrows — see example in Fig. 1.2.

Figure 1.2: GNU Radio — two blocks (Signal Source and Audio Sink) connected with an arrow
showing flow of the signal data

7

1.2 Most Popular GNU Radio Blocks
GNU Radio comes with a large set of existing blocks. Most popular ones are presented
below and an index to all of them can be found in Block Docs.

• Waveform Generators

– Constant Source
– Noise Source
– Signal Source (e.g. Sine,

Square, Saw Tooth)

• Modulators

– AM Demod
– Continuous Phase Modulation
– PSK Mod / Demod
– GFSK Mod / Demod
– GMSK Mod / Demod
– QAM Mod / Demod
– WBFM Receive
– NBFM Receive

• Instrumentation

– Constellation Sink
– Frequency Sink
– Histogram Sink
– Number Sink
– Time Raster Sink
– Time Sink
– Waterfall Sink

• Math Operators

– Abs
– Add
– Complex Conjugate
– Divide
– Integrate
– Log10
– Multiply
– RMS

– Subtract

• Channel Models

– Channel Model
– Fading Model
– Dynamic Channel Model
– Frequency Selective Fading

Model

• Filters

– Band Pass / Reject Filter
– Low / High Pass Filter
– IIR Filter
– Generic Filterbank
– Hilbert
– Decimating FIR Filter
– Root Raised Cosine Filter
– FFT Filter

• Fourier Analysis

– FFT
– Log Power FFT
– Goertzel (Resamplers)
– Fractional Resampler
– Polyphase Arbitrary Resampler
– Rational Resampler

(Synchronizers)
– Clock Recovery MM
– Correlate and Sync
– Costas Loop
– FLL Band-Edge
– PLL Freq Det
– PN Correlator
– Polyphase Clock Sync

8

Using these blocks, many standard tasks, like signal normalization, synchronization,
measurements, and visualization can be done by just connecting the appropriate block
to your signal processing flow graph.

It is also possible to write out own blocks, that either combine existing blocks with
some intelligence to provide new functionality together with some logic, or to combine
operations on the input and output data. Thus, GNU Radio is mainly a framework for the
development of signal processing blocks and their interaction. It comes with an extensive
standard library of blocks, and there are a lot of systems available that a developer might
build upon. However, GNU Radio itself is not a software that is ready to do something
specific – it’s the user’s job to build something useful out of it, though it already comes
with a lot of useful working examples. Think of it as a set of building blocks [2].

1.2.1 Default Blocks

The most important blocks that are automatically created in every GNU Radio project
are: Variable samp_rate and Options top_block.

The Variable samp_rate block sets the global sampling rate for the whole project,
the default here is 32000 samples/second, but the value can be adjusted to meet the needs
of specific project. All new blocks that will be added to the project later will use this
sampling rate as the default value, see Fig. 1.3.

Figure 1.3: GNU Radio — Variable samp_rate block

In the Options top_block block, the values that are global for the project are speci-
fied: Title, Author, Description, Canvas Size (width and length of the workspace in pixels),
Generate Options (QT GUI, WX GUI, No GUI (No GUI should be used), Hier Block (a hi-
erarchical block without GUI, which can be included in other projects), Hier Block with
QT GUI (hierarchical block with QT GUI, which can be included in other projects)), Run
(Autostart or Off), Realtime Scheduling (On or Off), QSS Theme (path to a .qss theme file
that defines how the project’s GUI should look like), see Fig. 1.4.

9

Figure 1.4: GNU Radio — Options top_block block

Variables: any variables can be created with global visibility for the current project.
It is done similar to the Variable samp_rate block.

1.3 Signal Data Types in GNU Radio
Every signal processing block in GNU Radio has an input/output port(s) that are able to
receive/send signal(s) of predefined data type(s). For each signal data type GNU Radio
shows the ports colored in the predefined way. The data types can be found in GNU
Radio Companion by clicking Help -> Types. The Fig. 1.5 shows all the signal data types
along with the colors associated with them.

The most often used signal data types are blue Complex Float 32 and orange Float
32. Common signals are also yellow Integer 16 and purple Integer 8. Two ports of
different blocks have to be compatible in sense of signal data types. That means, that
only Float 32 output port of one processing block can be connected to Float 32 input
port of another processing block. If the ports are incompatible, the arrow connecting
two block will be red, indicating a data mismatch error. It could be resolved by changing
the signal data types at one of the blocks.

1.4 Sources and Sinks in GNU Radio
As source blocks in GNURadio we assume the blocks that provide data in various formats
such as Complex, Complex Float, Float, Integer or Byte. The format in which the data
is provided at the output can be selected in the options of the block and is indicated by
the color of the small rectangle on the right side of the respective block. Only blocks
that use the same data format can be connected to each other. If this is not the case, the
arrows connecting the blocks to each other are displayed in red and the program cannot

10

Figure 1.5: GNU Radio signal data types

be executed until the error is corrected. If blocks are to be connected to one another for
which it is not possible to select the same data format in the options, the data format
converting block has to be inserted. These can be found in the right panel of GRC under
Type Converters.

1.4.1 GNU Radio Sources

1. Null Source — Fig. 1.6

2. Noise Source — Fig. 1.7

3. Signal Source — Fig. 1.8

4. File Source — Fig. 1.9

5. TCP Source — Fig. 1.10

6. UDP Source — Fig. 1.11

7. Audio Source — Fig. 1.12

8. WAV File Source — Fig. 1.13

9. UHD: USRP Source — Fig. 1.14

10. osmocom Source — Fig. 1.15

11. RTL-SDR Source — Fig. 1.16

12. Funcube Dongle — Fig. 1.17

11

Figure 1.6: GNU Radio sources — Null Source Figure 1.7: GNU Radio sources — Noise Source

Figure 1.8: GNU Radio sources — Signal Source Figure 1.9: GNU Radio sources — File Source

Figure 1.10: GNU Radio sources — TCP Source Figure 1.11: GNU Radio sources — UDP Source

12

Figure 1.12: GNU Radio sources — Audio
Source

Figure 1.13: GNU Radio sources — WAV File
Source

Figure 1.14: GNU Radio sources — UHD: USRP
Source

Figure 1.15: GNU Radio sources — osmocom
Source

Figure 1.16: GNU Radio sources — RTL-SDR
Source

Figure 1.17: GNU Radio sources — Funcube
Dongle Source

13

1.4.2 GNU Radio Sinks

1. Null Sink — Fig. 1.18

2. File Sink — Fig. 1.19

3. TCP Sink — Fig. 1.20

4. TCP Server Sink — Fig. 1.21

5. UDP Sink — Fig. 1.22

6. Audio Sink — Fig. 1.23

7. WAV File Sink — Fig. 1.24

8. UHD: USRP Sink — Fig. 1.25

9. osmocom Sink — Fig. 1.26

Figure 1.18: GNU Radio sinks — Null Sink Figure 1.19: GNU Radio sinks — File Sink

Figure 1.20: GNU Radio sinks — TCP Sink Figure 1.21: GNU Radio sinks — TCP Server
Sink

14

Figure 1.22: GNU Radio sinks — UDP Sink Figure 1.23: GNU Radio sinks — Audio Sink

Figure 1.24: GNU Radio sinks — WAV File Sink Figure 1.25: GNU Radio sinks — UHD: USRP
Sink

Figure 1.26: GNU Radio sinks — osmocom Sink

15

1.4.3 GNU Radio Instrumentation Sinks

1. QT GUI sinks

(a) QT GUI Sink — Fig. 1.27
(b) QT GUI Constellation Sink — Fig. 1.28
(c) QT GUI Frequency Sink — Fig. 1.29
(d) QT GUI Histogram Sink — Fig. 1.30
(e) QT GUI Number Sink — Fig. 1.31
(f) QT GUI Time Raster Sink — Fig. 1.32
(g) QT GUI Time Sink — Fig. 1.33
(h) QT GUI Vector Sink — Fig. 1.34
(i) QT GUI Waterfall Sink — Fig. 1.35

2. WX GUI sinks

(a) WX GUI Constellation Sink — Fig. 1.36
(b) WX GUI FFT Sink — Fig. 1.37
(c) WX GUI Histo Sink — Fig. 1.38
(d) WX GUI Number Sink — Fig. 1.39
(e) WX GUI Scope Sink — Fig. 1.40
(f) WX GUI Terminal Sink — Fig. 1.41
(g) WX GUI Waterfall Sink — Fig. 1.42

Figure 1.27: GNU Radio instrumentation sinks —
QT GUI Sink

Figure 1.28: GNU Radio instrumentation sinks —
QT GUI Constellation Sink

16

Figure 1.29: GNU Radio instrumentation sinks —
QT GUI Frequency Sink

Figure 1.30: GNU Radio instrumentation sinks —
QT GUI Histogram Sink

Figure 1.31: GNU Radio instrumentation sinks —
QT GUI Number Sink

Figure 1.32: GNU Radio instrumentation sinks —
QT GUI Time Raster Sink

Figure 1.33: GNU Radio instrumentation sinks —
QT GUI Time Sink

Figure 1.34: GNU Radio instrumentation sinks —
QT GUI Vector Sink

17

Figure 1.35: GNU Radio instrumentation sinks —
QT GUI Waterfall Sink

Figure 1.36: GNU Radio instrumentation sinks —
WX GUI Constellation Sink

Figure 1.37: GNU Radio instrumentation sinks —
WX GUI FFT Sink

Figure 1.38: GNU Radio instrumentation sinks —
WX GUI Histo Sink

Figure 1.39: GNU Radio instrumentation sinks —
WX GUI Number Sink

Figure 1.40: GNU Radio instrumentation sinks —
WX GUI Scope Sink

18

Figure 1.41: GNU Radio instrumentation sinks —
WX GUI Terminal Sink

Figure 1.42: GNU Radio instrumentation sinks —
WX GUI Waterfall Sink

19

20 Chapter 2

Selected Radio Signal Applications
in GNU Radio

This section contains proposals of the receivers and transmitters for three basic analog
modulations: Amplitude Modulation (AM), Frequency Modulation (FM) and Single Side
Band (SSB) Modulation. Proposed receivers and transmitters do not utilize real RF hard-
ware (with the exception of the last one example), the RF signal from the transmitter to
the receiver is sent via a network socket using ZMQ blocks. All of the presented propos-
als are based on the ideas shown in official GNU Radio Tutorials [3], however they are
made from scratch showing all the parameters necessary tomake the flowgraphs running
withour errors. These examples were tested under GNU Radio 3.7.11.

The descriptions of the modulations schemes are omited here since they are widely
spread in numerous sources.

2.1 Amplitude Modulation (AM)
This subsection presents Amplitude Modulation (AM) Transmitter and Receiver.

2.1.1 AM Transmitter

AM transmitter flowgraph is shown in Fig. 2.1. The parameters of the building blocks
are following:

• Variable:

– samp_rate = 768 kHz

(gives the 48 kHz carrier frequency 16 samples in every cycle)

• Audio Source:

– Sample Rate = 48 kHz

• Repeat:

– Interpolation = 16

(boosts the audio sample rate to the system sample rate)

• QT GUI Range defines Audio gain (= volume variable) controls

• Multiply Const:

– Constant = volume variable

• Add Const:

– Constant = 1

(creates AM carrier in the absence of the audio signal)

• Signal Source:

– Frequency = 48 kHz

– Amplitude = 1

(generates carrier signal frequency)

• QT GUI Time Sink:

– Number of Points = 4096

(shows visual representation of the transmitted signal)

• ZMQ PUB Sink:

– Address = tcp://127.0.0.1:50222

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the AM signal carrying
audio signal recorded with microphone. QT GUI Time Sink will show changing pattern
of the signal, modulation level could be adjusted with the volume control in QT GUI
Range block. The output signal can be demodulated by the receiver described in the next
subsection.

2.1.2 AM Receiver

AM receiver flowgraph is shown in Fig. 2.2. The parameters of the building blocks are
following:

• Variable:

– samp_rate = 768 kHz

• Variable:

– decim = 16

(defines the decimation factor to reduce the incoming sample rate by 16 in order
to get an audio sample rate of 48 kHz for the Audio Sink block)

• ZMQ SUB Source:

– Address = tcp://127.0.0.1:50222

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

21

Figure 2.1: GNU Radio — AM transmitter flowgraph

22

• Frequency Xlating FIR Filter:

– Type = Float->Complex (Real Taps)
– Decimation = decim
– Taps = firdes.low_pass(1,samp_rate,samp_rate/(2*decim), 2000)
– Center Frequency = 48 kHz
– Sample Rate = samp_rate

(performs frequency translation, filtering and decimation)

• AGC (Automatic Gain Control):

– default values

(adjusts the input signal to the given reference level)

• Complex to Mag:

– no values

(calculates magnitude of the complex samples in order to restore original modula-
tion signal)

• Band Pass Filter:

– FIR Type = Float->Float (Real Taps)(Decim)
– Decimation = 1
– Gain = 1
– Sample Rate = (int)(samp_rate/decim)
– Low Cutoff Freq = 500 Hz
– High Cutoff Freq = 6 kHz
– Transition Width = 400

• QT GUI Range defines Audio gain (= volume variable) controls

• Multiply Const:

– Constant = volume variable

• QT GUI Time Sink:

– Sample Rate = (int)(samp_rate/decim)
– Number of Points = 256

(shows visual representation of the received signal)

• Audio Sink:

– Sample Rate = 48 kHz
– OK to Block = Yes

After compiling and executing the flowgraph, it will receive the AM signal from a net-
work data socket connected to the transmitting section described in the previous subsec-
tion. QT GUI Time Sink will show changing pattern of the signal.

23

Figure 2.2: GNU Radio — AM receiver flowgraph

24

2.2 Frequency Modulation (FM)
This subsection presents Narrow Band Frequency Modulation (NBFM) Transmitter and
Receiver.

2.2.1 NBFM Transmitter

FM transmitter flowgraph is shown in Fig. 2.3. The parameters of the building blocks are
following:

• Variable:

– samp_rate = 48 kHz

• Variable:

– usrp_rate = 576 kHz

• Variable:

– if_rate = 192 kHz

• QT GUI Range defines Audio gain (= audio_gain variable) controls

• QTGUI Chooser defines three PL tones — pl_freq variable: 0 Hz, 67 Hz and 71.9 Hz

• Audio Source:

– Sample Rate = 48 kHz

• Band Pass Filter:

– Decimation = 1

– Gain = 1

– Sample Rate = samp_rate

– Low Cuttoff Freq = 300 Hz

– High Cutoff Freq = 5 kHz

– Transition Width = 200

– Window = Hamming

– Beta = 6.76

• Multiply Const:

– audio_gain variable

• Signal Source:

– Sample Rate = 48 kHz

– Waveform = Sine

– Frequency = pl_freq

25

– Amplitude = 0.150

– Offset = 0

• NBFM Transmit:

– Audio Rate = 48 kHz

– Quadrature Rate = if_rate

– Tau = 0.000075

– Max Deviation = 5000

– Preemphasis High Corner Freq = −1
• QT GUI Sink:

– FFT Size = 1024

– Center Frequency = 0 Hz

– Bandwidth = if_rate

– Update Rate = 10

• Low Pass Filter:

– Decimation = 1

– Gain = 1

– Sample Rate = if_rate

– Cutoff Freq = 5 kHz

– Transition Width = 2000

– Window = Hamming

– Beta = 6.76

• Repeat:

– Interpolation = 3

(multiplies if_rate in order to get usrp_rate)

• ZMQ PUB Sink:

– Address = tcp://127.0.0.1:49999

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the FM signal carrying
audio signal recorded with microphone. Modulation level could be adjusted with the
volume control in QT GUI Range block. The output signal can be demodulated by the
receiver described in the next subsection.

26

Figure 2.3: GNU Radio — FM transmitter flowgraph

27

2.2.2 NBFM Receiver

FM receiver flowgraph is shown in Fig. 2.4. The parameters of the building blocks are
following:

• Variable:

– samp_rate = 576 kHz

• Variable:

– rf_decim = 3

• Band-pass Filter Taps:

– ID = channel_filter

– Tap Type = Complex

– Gain = 1

– Sample Rate = samp_rate

– Low Cuttoff Freq = −3 kHz
– High Cutoff Freq = 3 kHz

– Transition Width = 200

– Window = Hamming

– Beta = 6.76

(defines Filter Taps for the FFT Filter block)

• QT GUI Range defines VOLume level (= VOL_level variable) controls

• QT GUI Range defines SQueLch level (= SQL_level variable) controls

• ZMQ SUB Source:

– Address = tcp://127.0.0.1:49999

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

• FFT Filter:

– Type = Complex->Complex (Complex Taps)

– Decimation = rf_decim

– Taps = channel_filter

– Num. Threads = 1

• Simple Squelch:

– Threshold = −50 dB
– Alpha = 1

28

• NBFM Receive:

– Audio Rate = 48 kHz

– Quadrature Rate = 192 kHz

– Tau = 0.000075

– Max Deviation = 5000

• Multiply Const:

– VOL_level variable

• Audio Sink:

– Sample Rate = 48 kHz

• QT GUI Waterfall Sink:

– FFT Size = 1024

– Center Frequency = 0 Hz

– Bandwidth = samp_rate

(shows a waterfall spectrum display with visual representation of the received sig-
nal)

After compiling and executing the flowgraph, it will receive the FM signal from a network
data socket connected to the transmitting section described in the previous subsection.
QT GUI Waterfall Sink will show changing pattern of the signal. GUI windows with
Volume and Squelch controls allow for controling received signal.

2.3 Single Side Band (SSB) Modulation
This subsection presents Single Side Band (SSB) Modulation Transmitter and Receiver.

2.3.1 SSB Transmitter

SSB transmitter flowgraph is shown in Fig. 2.5. The parameters of the building blocks
are following:

• Variable:

– samp_rate = 192 kHz

• Variable:

– audio_rate = 48 kHz

• Variable:

– carrier_freq = 16 kHz

29

Figure 2.4: GNU Radio — FM receiver flowgraph

30

• Variable:

– interp = 4

• QT GUI Range defines Audio gain (= volume variable) controls

• Audio Source:

– Sample Rate = samp_rate

• Multiply Const:

– volume variable

• Repeat:

– Interpolation = interp variable

(boosts the audio sample rate to the system sample rate)

• Constant Source:

– Constant = 0

• Float to Complex

(converts float data into complex numbers)

• Signal Source:

– Sample Rate = samp_rate

– Waveform = Sine

– Frequency = carrier_freq

– Amplitude = 1

– Offset = 0

• Multiply

(creates modulated SSB signal)

• Band Pass Filter:

– Decimation = 1

– Gain = 1

– Sample Rate = samp_rate

– Low Cuttoff Freq = 16.3 kHz

– High Cutoff Freq = 19 kHz

– Transition Width = 200

– Window = Hamming

– Beta = 6.76

(creates SSB signal by passing one (upper) sideband only and rejecting the other —
the filter method)

31

• QT GUI Frequency Sink:

– FFT Size = 1024

– Center Frequency = 0 Hz

– Bandwidth = samp_rate

• ZMQ PUSH Sink:

– Address = tcp://127.0.0.1:50333

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the SSB signal carrying
audio signal recorded with microphone. QT GUI Frequency Sink will show changing
pattern of the signal, modulation level could be adjusted with the volume control in QT
GUI Range block. The output signal can be demodulated by the receiver described in the
next subsection.

2.3.2 SSB Receiver

SSB receiver flowgraph is shown in Fig. 2.6. The parameters of the building blocks are
following:

• Variable:

– samp_rate = 192 kHz

• Variable:

– audio_rate = 48 kHz

• Variable:

– carrier_freq = 16 kHz

• Variable:

– decim = 4

• QT GUI Range defines Tuning (= tuning variable) controls:

– Start = 11000

– Stop = 21000

– Step = 100

– Default Value = 17500

• QT GUI Range defines Fine Tuning (= bfo variable) controls:

– Start = 0

– Stop = 3000

32

Figure 2.5: GNU Radio — SSB transmitter flowgraph

33

– Step = 10

– Default Value = 1500

• QT GUI Range defines Audio gain (= volume variable) controls:

– Start = 0

– Stop = 1

– Step = 0.050

– Default Value = 0.500

• QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)

• ZMQ PULL Source:

– Address = tcp://127.0.0.1:50333

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

• Frequency Xlating FIR Filter:

– Type = Complex->Complex (Complex Taps)

– Decimation = decim

– Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

– Center Frequency = tuning

– Sample Rate = samp_rate

(performs frequency translation, filtering and decimation)

• Complex to Float:

– no values

(converts complex numbers into floats)

• Signal Source:

– Sample Rate = audio_rate

– Waveform = Cosine

– Frequency = bfo

– Amplitude = 1

– Offset = 0

• Multiply:

– no values

(multiplies signals)

34

• Multiply Const:

– Constant = 1

• Add:

– no values

(adds signals)

• Multiply Const:

– Constant = volume variable

• Audio Sink:

– Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a net-
work data socket connected to the transmitting section described in the previous sub-
section. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.3.3 SSB Receiver — I/Q Signal from the File

The flowgrpah of the SSB receiver taking I/Q signal from the file is shown in Fig. 2.7. The
parameters of the building blocks are following:

• Variable

– samp_rate = 256 kHz

• Variable

– audio_rate = 32 kHz

• Variable

– carrier_freq = 53 kHz

• Variable

– decim = 8

• QT GUI Range defines Tuning (= tuning variable) controls:

– Start = 48000

– Stop = 58000

– Step = 100

– Default Value = 51500

35

Figure 2.6: GNU Radio — SSB receiver flowgraph

36

• QT GUI Range defines Fine Tuning (= bfo variable) controls:

– Start = 0

– Stop = 3000

– Step = 10

– Default Value = 1500

• QT GUI Range defines Audio gain (= volume variable) controls:

– Start = 0

– Stop = 1

– Step = 0.050

– Default Value = 0.200

• QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)

• File Source:

– File = ssb_lsb_256k_complex2.dat

– Repeat = yes

(the signal is taken from the file, it is necessary to download it from https://www.
csun.edu/~skatz/katzpage/sdr_project/sdr/ssb_lsb_256k_complex2
.dat.zip)

• Multiply Const:

– Constant = 0.0001

• Frequency Xlating FIR Filter:

– Type = Complex->Complex (Complex Taps)

– Decimation = decim

– Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

– Center Frequency = tuning

– Sample Rate = samp_rate

(performs frequency translation, filtering and decimation)

• Complex to Float:

– no values

(converts complex numbers into floats)

• Signal Source:

– Sample Rate = audio_rate

– Waveform = Cosine

– Frequency = bfo

37

– Amplitude = 1

– Offset = 0

• Multiply:

– no values

(multiplies signals)

• Add:

– no values

(adds signals)

• Multiply Const:

– Constant = volume variable

• Audio Sink:

– Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a pro-
vided file. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.4 RTL-SDR Based WFM Receiver
In Fig. 2.8 a simple example of the broadcast WFM receiver is presented. It consists of
RTL-SDR Source block as a radio signal source, FM Demod block as a FM demodulator,
Multiply Const block supplying a volume value for the audio level and Audio Sink block
that allows playing audio signal.

The parameters of the building blocks are following:

• Variable

– samp_rate = 240 kHz

• Variable

– deviation = 75 kHz

• Variable

– audio_decim = 5

• QT GUI Range defines RF Gain (= rf_gain variable) controls:

– Start = 0

– Stop = 70

– Step = 1

– Default Value = 50

38

Figure 2.7: GNU Radio — SSB receiver flowgraph — I/Q signal from the file

39

• QT GUI Range defines Tuning (= tuning variable) controls:

– Start = 87.9 MHz

– Stop = 108.1 MHz

– Step = 100 kHz

– Default Value = 98 MHz

• QT GUI Range defines Volume (= volume variable) controls:

– Start = 0

– Stop = 1

– Step = 0.050

– Default Value = 0.300

• RTL-SDR Source:

– Sample Rate = samp_rate variable
– Frequency = tuning variable
– Freq. Corr. = 0

– DC Offset Mode = Off

– IQ Balance Mode = Off

– Gain Mode = Manual

– RF Gain = rf_gain variable
– IF Gain = 20 dB

– BB Gain = 20 dB

• FM Demod:

– Channel Rate = samp_rate variable
– Audio Decimation = audio_decim variable
– Deviation = deviation variable
– Audio Pass = 15 kHz

– Audio Stop = 16 kHz

– Gain = 1

– Tau = 0.000075

• Multiply Const:

– Constant = volume variable

• Audio Sink:

– Sample Rate = (int)(samp_rate/audio_rate)

40

Figure 2.8: GNU Radio — RTL-SDR based broadcast WFM receiver

41

42

Bibliography

[1] GNU Radio, https://www.gnuradio.org/

[2] What Is GNU Radio,
https://wiki.gnuradio.org/index.php?title=What_Is_GNU_Radio

[3] GNU Radio Tutorials,
https://wiki.gnuradio.org/index.php?title=Tutorials

43

List of Figures

1.1: GNU Radio — seven blocks connected together form a flowgraph 7
1.2: GNU Radio — two blocks (Signal Source and Audio Sink) connected with

an arrow showing flow of the signal data 7
1.3: GNU Radio — Variable samp_rate block 9
1.4: GNU Radio — Options top_block block . 10
1.5: GNU Radio signal data types . 11
1.6: GNU Radio sources — Null Source . 12
1.7: GNU Radio sources — Noise Source . 12
1.8: GNU Radio sources — Signal Source . 12
1.9: GNU Radio sources — File Source . 12
1.10: GNU Radio sources — TCP Source . 12
1.11: GNU Radio sources — UDP Source . 12
1.12: GNU Radio sources — Audio Source . 13
1.13: GNU Radio sources — WAV File Source 13
1.14: GNU Radio sources — UHD: USRP Source 13
1.15: GNU Radio sources — osmocom Source 13
1.16: GNU Radio sources — RTL-SDR Source 13
1.17: GNU Radio sources — Funcube Dongle Source 13
1.18: GNU Radio sinks — Null Sink . 14
1.19: GNU Radio sinks — File Sink . 14
1.20: GNU Radio sinks — TCP Sink . 14
1.21: GNU Radio sinks — TCP Server Sink . 14
1.22: GNU Radio sinks — UDP Sink . 15
1.23: GNU Radio sinks — Audio Sink . 15
1.24: GNU Radio sinks — WAV File Sink . 15
1.25: GNU Radio sinks — UHD: USRP Sink . 15
1.26: GNU Radio sinks — osmocom Sink . 15
1.27: GNU Radio instrumentation sinks — QT GUI Sink 16
1.28: GNU Radio instrumentation sinks — QT GUI Constellation Sink 16
1.29: GNU Radio instrumentation sinks — QT GUI Frequency Sink 17
1.30: GNU Radio instrumentation sinks — QT GUI Histogram Sink 17
1.31: GNU Radio instrumentation sinks — QT GUI Number Sink 17
1.32: GNU Radio instrumentation sinks — QT GUI Time Raster Sink 17
1.33: GNU Radio instrumentation sinks — QT GUI Time Sink 17
1.34: GNU Radio instrumentation sinks — QT GUI Vector Sink 17
1.35: GNU Radio instrumentation sinks — QT GUI Waterfall Sink 18
1.36: GNU Radio instrumentation sinks — WX GUI Constellation Sink 18
1.37: GNU Radio instrumentation sinks — WX GUI FFT Sink 18

1.38: GNU Radio instrumentation sinks — WX GUI Histo Sink 18
1.39: GNU Radio instrumentation sinks — WX GUI Number Sink 18
1.40: GNU Radio instrumentation sinks — WX GUI Scope Sink 18
1.41: GNU Radio instrumentation sinks — WX GUI Terminal Sink 19
1.42: GNU Radio instrumentation sinks — WX GUI Waterfall Sink 19
2.1: GNU Radio — AM transmitter flowgraph 22
2.2: GNU Radio — AM receiver flowgraph . 24
2.3: GNU Radio — FM transmitter flowgraph 27
2.4: GNU Radio — FM receiver flowgraph . 30
2.5: GNU Radio — SSB transmitter flowgraph 33
2.6: GNU Radio — SSB receiver flowgraph . 36
2.7: GNU Radio — SSB receiver flowgraph — I/Q signal from the file 39
2.8: GNU Radio — RTL-SDR based broadcast WFM receiver 41

44

Wireless Signal Processing in GNU Radio Environment
Study text

Author: dr inż. Remigiusz Olejnik
West Pomeranian University of Technology in Szczecin
Publisher: Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Graphic editing and typesetting: Jiří Rybička, Pavel Haluza
Year of publishing: 2022
First edition
Number of pages: 46
ISBN 978-80-7509-891-7 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-891-7

