Mendel University in Brno

Wireless Signal Processing
in GNU Radio Environment
Study text

Remigiusz Olejnik
West Pomeranian University of Technology in Szczecin

Project: Innovative Open Source Courses
for Computer Science Curriculum

NI

Mendel
Co-funded by the West Pomeranian UNIVERSITY University
Erasmus+ ngram_me University of Technology OF ZILINA in Brno
of the European Union Szczecin

Reviewer: Ing. Peter Sarafin, PhD., University of Zilina, Slovakia

Project: Innovative Open Source Courses for Computer Science Curriculum
© Mendel University in Brno, Zemédélska 1, 613 00 Brno, Czech Republic
ISBN 978-80-7509-891-7 (online; pdf)

DOI https://doi.org/10.11118/978-80-7509-891-7

@ ®0

Open Access. This book is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International License, CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/)

Project: Innovative Open Source Courses for Computer Science Curriculum

Bale

This material teaching was written as one of the outputs of the project “Innovative Open
Source Courses for Computer Science Curriculum”, funded by the Erasmus+ grant no.
2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian University
of Technology in Szczecin (Poland) and is implemented in partnership with Mendel Uni-
versity in Brno (Czech Republic) and University of Zilina (Slovak Republic). The project
implementation timeline is September 2019 to December 2022.

Project information

Project was implemented under the Erasmus+.

Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564

Key Action: KA2 — Cooperation for innovation and the exchange of good practices
Action Type: KA203 — Strategic Partnerships for higher education

Consortium

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNE

ZILINSKA UNIVERZITA V ZILINE

Erasmus+ Disclaimer

This project has been funded with support from the European Commission. This publication reflects the views
only of the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019-2022. The content is Copyrighted and distributed
under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

Co-funded by the
Erasmus+ Programme
of the European Union

Preface

The book is a teaching resource produced as part of the project “Innovative Open Source
Courses for Computer Science”. It is dedicated to teachers, students and people interested
in gaining or extending their knowledge in the use Wireless Signal Processing in GNU
Radio Environment.

GNU Radio is a free and open source software development toolkit that provides
signal processing blocks to implement Software Defined Radios (SDRs). It is a highly
modular, “flowgraph”-oriented framework, that comes with a large set of existing blocks.
GNU Radio can be used with readily-available low-cost external RF hardware (such as
RTL-SDR or HackRF) to create software-defined radios. It is a great tool to be used at
any university course related with wireless/radio signal processing. Presented examples
could be easily built and run and form a solid base for further experimentation.

Acknowledgments

At this point, would like to express my gratitude to Ing. Peter Sarafin, PhD., for valuable
comments and suggestions on this text.

1 What is GNU Radio and Why it is Worth to Use it
1.1 A Flowgraph-Based Approach to Digital Signal Processing

1.2 Most Popular GNU Radio Blocks
1.2.1 DefaultBlocks
1.3 Signal Data Typesin GNURadio
1.4 Sources and Sinksin GNURadio
141 GNURadioSources.
142 GNURadioSinks
1.4.3 GNU Radio Instrumentation Sinks

2 Selected Radio Signal Applications in GNU Radio

2.1 Amplitude Modulation (AM)
2.1.1 AMTransmitter
212 AMReceiver 0.,
2.2 Frequency Modulation (FM)
2.2.1 NBFM Transmitter
222 NBFMReceiver
2.3 Single Side Band (SSB) Modulation
23.1 SSB Transmitter
232 SSBReceiver
2.3.3 SSBReceiver — I/Q Signal from the File
2.4 RTL-SDR Based WFM Receiver

Contents

O 0 N &

10
10
11
14
16

6 Chapter 1

What is GNU Radio
and Why it is Worth to Use it

GNU Radio [1] is a free, open source, universal software toolkit based on C++ and Python,
that enables DSP applications to be created without knowledge of a programming lan-
guage. GNU Radio provides just signal processing blocks, thus allowing to implement
software-defined radios.

It supports numerous devices and external interfaces, so it can be used with low cost
RF hardware (such as RTL-SDR receiver or HackRF transceiver) allowing to create Soft-
ware Defined Radios, or even without any piece of hardware in a simulation-like manner.
GNU Radio is very popular in wide range of applications, starting from academia and
R&D through industry and government to hobbyist environments. It is easy to deploy in
all the applications demanding on wireless communications research.

In traditional approach, the RF engineer developed radio communications devices by
creating a specific circuits for detection of one RF signal class. It had to be implemented
as a specific integrated circuit that would be able to make decoding and/or encoding
process of that particular transmission possible and at the end to debug all these steps
using costly equipment.

Software-Defined Radio (SDR) approach takes the analog signal processing and
moves it, as far as it is physically and economically possible and feasible, to process the
RF signals directly on a computer using specialized software algorithms instead of using
costly hardware.

It is of course possible to utilize a radio device which is connected to the computer,
in a program that is composed of numerous signal processing algorithms merged to-
gether. However it is a waste of time and energy to re-implement basic and well-known
operations on radio signals like filtering or mixing. It is much more efficient to use
highly optimized and peer-reviewed algorithms’ implementations rather than writing
them from scratch. Moreover the program is scalable on multi-core architecture and run
on an energy-efficient embedded devices as well. And there is no need to create own
GUIs. It is GNU Radio, a framework powering the world of RF signal processing world
today.

1.1 A Flowgraph-Based Approach to Digital Signal
Processing

GNU Radio offers a universal software library for different devices with easy ways to
expand it. A ,GNU Radio Companion” (GRC) is an IDE-like software environment that
simplifies creating and running so-called flowgraphs, a complete graph of blocks. Fig.
1.1 shows an example of flowgraph.

Options
1D: top_block

Title: Tutorial 2

Author: Remigiusz Olejnik
Generate Options: WX GUI

Sample
I Wavefor

Variable
1D: samp _rate
Value: 48k Sample

[Wavefol

Signal Source

Frequency: lk
Amplitude: 500m
Offset: 0

Signal Source

Frequency: 500
Amplitude: 500m
Offset: 0

Rate: 48k
rm: Cosine

Rate: 48k
rm: Cosine

WX GUI Slider
1D: freq2

Default Value: 800
Minimum: 10
Maximum: 2k
Converter: Float

WX GUI Text Box
1D: level2

Default Value: 500m
Converter: Float

WX GUI Chooser
1D: freql

Default Value: 1k
Choices: 500, 1k, 1.5k
Labels:

Type: Button

Throttle
Sample Rate: 48k

WX GUI FFT Sink
Title: FFT Plot
Sample Rate: 48k
Baseband Freq: 0
Y per Div: 10 dB
4" ¥ Divs: 10

Ref Level (dB): 0
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Freq Set Varname: None

WX GUI Waterfall Sink

Title: Waterfall Plot

Sample Rate: 45k

Baseband Freq: 0
Dynamic Range: 100

_.'I Reference Level: 0

Ref Scale (p2p): 2

FFT Size: 512

FFT Rate: 15

Freq Set Varname: None

Audio Sink
Sample Rate: 48k

Figure 1.1: GNU Radio — seven blocks connected together form a flowgraph

However, GNU radio programs can be run with or without user interface and also

standalone without GRC. General structure of a flowgraph is based on the flow of the
signal from a Source to a Processing Block(s) and then to a Sink. Sources and/or sinks
can be SDR devices, files, audio devices and even network services such as TCP/UDP that
allow to send signals over the networks. Two groups of the blocks (Sources and Sinks)
building flowgraphs are presented in a subchapter 1.2.

GNU Radio framework allows developing these processing blocks and creating flow-
graphs, which comprise radio processing applications. Existing blocks could be combined
into a high-level flowgraph that does something as complex as receiving digitally modu-
lated signals.

In GNU Radio framework individual processing stages such as filtering, correction,
analysis, detection etc. are represented by processing blocks; these blocks are connected
using simple flow-indicating arrows — see example in Fig. 1.2.

Signal Source
Sample Rate: 32k
Waveform: Cosine
[Frequency: 1k
Amplitude: 900m
Offset: 0

Audio Sink
Sample Rate: 32k

Figure 1.2: GNU Radio — two blocks (Signal Source and Audio Sink) connected with an arrow
showing flow of the signal data

1.2 Most Popular GNU Radio Blocks

GNU Radio comes with a large set of existing blocks. Most popular ones are presented
below and an index to all of them can be found in Block Docs.

- Waveform Generators — Subtract
— Constant Source « Channel Models
— Noise Source — Channel Model
— Signal Source (e.g. Sine, _ Fading Model
Square, Saw Tooth)
— Dynamic Channel Model

+ Modulators — Frequency Selective Fading

- AM Demod Model
— Continuous Phase Modulation « Filters
- PSKMod/ Demod — Band Pass / Reject Filter
— GFSK Mod / D d
od/Demo - Low / High Pass Filter
— GMSK Mod / Demod .
- IIR Filter
- QAM Mod / D d
Q ° eme — Generic Filterbank
— WBFM Receive Hilbert
- Hilber
— NBFM Receive
— Decimating FIR Filter
* Instrumentation - Root Raised Cosine Filter
— Constellation Sink - FFT Filter
— Frequency Sink « Fourier Analysis
- Histogram Sink
. - FFT
— Number Sink
— LogP FFT
— Time Raster Sink 08 Tower
_ Time Sink - Goerfzel (Resamplers)
_ Waterfall Sink — Fractional Resampler

— Polyphase Arbitrary Resampler

* Math Operators — Rational Resampler

— Abs (Synchronizers)

- Add — Clock Recovery MM
- Complex Conjugate — Correlate and Sync

- Divide — Costas Loop

- Integrate — FLL Band-Edge

- Logl10 — PLL Freq Det

— Multiply — PN Correlator

- RMS — Polyphase Clock Sync

Using these blocks, many standard tasks, like signal normalization, synchronization,
measurements, and visualization can be done by just connecting the appropriate block
to your signal processing flow graph.

It is also possible to write out own blocks, that either combine existing blocks with
some intelligence to provide new functionality together with some logic, or to combine
operations on the input and output data. Thus, GNU Radio is mainly a framework for the
development of signal processing blocks and their interaction. It comes with an extensive
standard library of blocks, and there are a lot of systems available that a developer might
build upon. However, GNU Radio itself is not a software that is ready to do something
specific - it’s the user’s job to build something useful out of it, though it already comes
with a lot of useful working examples. Think of it as a set of building blocks [2].

1.2.1 Default Blocks

The most important blocks that are automatically created in every GNU Radio project
are: Variable samp_rate and Options top_block.

The Variable samp_rate block sets the global sampling rate for the whole project,
the default here is 32000 samples/second, but the value can be adjusted to meet the needs
of specific project. All new blocks that will be added to the project later will use this
sampling rate as the default value, see Fig. 1.3.

Properties: Variable (<]

General Advanced Documentation
D samp_rate
Value 32000

OK Cancel

Figure 1.3: GNU Radio — Variable samp_rate block

In the Options top_block block, the values that are global for the project are speci-
fied: Title, Author, Description, Canvas Size (width and length of the workspace in pixels),
Generate Options (QT GUL, WX GUI, No GUI (No GUI should be used), Hier Block (a hi-
erarchical block without GUI, which can be included in other projects), Hier Block with
QT GUI (hierarchical block with QT GUI, which can be included in other projects)), Run
(Autostart or Off), Realtime Scheduling (On or Off), QSS Theme (path to a .gss theme file
that defines how the project’s GUI should look like), see Fig. 1.4.

Properties: Options

General Advanced Documentation
D top_block
Title
Author
Description

Canvas Size

| ““

Generate Options QT GUI
Run Autostart b4
Max Number of Output |0
Realtime Scheduling | OFf 2

Q55 Theme

OK Cancel ApPP

Figure 1.4: GNU Radio — Options top_block block

Variables: any variables can be created with global visibility for the current project.
It is done similar to the Variable samp_rate block.

1.3 Signal Data Types in GNU Radio

Every signal processing block in GNU Radio has an input/output port(s) that are able to
receive/send signal(s) of predefined data type(s). For each signal data type GNU Radio
shows the ports colored in the predefined way. The data types can be found in GNU
Radio Companion by clicking Help -> Types. The Fig. 1.5 shows all the signal data types
along with the colors associated with them.

The most often used signal data types are blue Complex Float 32 and orange Float
32. Common signals are also yellow Integer 16 and purple Integer 8. Two ports of
different blocks have to be compatible in sense of signal data types. That means, that
only Float 32 output port of one processing block can be connected to Float 32 input
port of another processing block. If the ports are incompatible, the arrow connecting
two block will be red, indicating a data mismatch error. It could be resolved by changing
the signal data types at one of the blocks.

1.4 Sources and Sinks in GNU Radio

As source blocks in GNU Radio we assume the blocks that provide data in various formats
such as Complex, Complex Float, Float, Integer or Byte. The format in which the data
is provided at the output can be selected in the options of the block and is indicated by
the color of the small rectangle on the right side of the respective block. Only blocks
that use the same data format can be connected to each other. If this is not the case, the
arrows connecting the blocks to each other are displayed in red and the program cannot

10

6 Color Mapping

Complex Integer 16

Integer 64

Integer 16

Async Message
Bus Connection
Wildcard

(clozesy)

Figure 1.5: GNU Radio signal data types

be executed until the error is corrected. If blocks are to be connected to one another for
which it is not possible to select the same data format in the options, the data format
converting block has to be inserted. These can be found in the right panel of GRC under
Type Converters.

1.4.1 GNU Radio Sources
1. Null Source — Fig. 1.6
. Noise Source — Fig. 1.7
. Signal Source — Fig. 1.8
. File Source — Fig. 1.9
. TCP Source — Fig. 1.10
. UDP Source — Fig. 1.11
. Audio Source — Fig. 1.12
. WAV File Source — Fig. 1.13
. UHD: USRP Source — Fig. 1.14

O 00 N N R W N

10. osmocom Source — Fig. 1.15
11. RTL-SDR Source — Fig. 1.16
12. Funcube Dongle — Fig. 1.17

11

Properties: Null Source

General | Advanced | Documentation

D [blocks_null_source_0 |
Output Type | Complex 3

]
]

Vec Length
Num Qutputs

Bus Connections | [[

Source - out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.6: GNU Radio sources — Null Source

Signal Source

Properties: Signal Source

General| Advanced Documentation

D |analog_sig_source_x_0]
Output Type | Complex 3
Waveform
Frequency
Amplitude
Offset

Source -out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.8: GNU Radio sources — Signal Source

Noise Source
Nofse Type: Gaussian
Amplitude: 1

Seed: 0

Properties: Nolse Source

General|| Advanced Documentation

D |analog_noise_source x_0

Output Type | Complex

Noise Type Gaussian v
s GO

Source - out(0):
Portis not connected.

| ok || cancel Apply.

Figure 1.7: GNU Radio sources — Noise Source

(General | Advanced

D |blocks_file_source_0]
e (Jl-)
Output Type | complex
Repeat |Yes 2

Source-out(0):
Port s not connected.

| ok | cancel Apply

Figure 1.9: GNU Radio sources — File Source

Source-out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.10: GNU Radio sources — TCP Source

12

e s
1P Address: 127.0.01
General | Advanced | Documentation Pk 2 e General | Advanced | Documentation
D |blks2_tcp_source_0) Null Pkt is EOF: True D [blocks_udp_source 0]
OutputType | Complex : Outputype | Complex :
gy P
port o Pt [Esa

Source - out(0):
Port is not connected.

| ok || cancel Apply

Figure 1.11: GNU Radio sources — UDP Source

General | Advanced | Documentation

D audio_source_0
OK to Block |Yes 2

Device Name

Source - out(0):
Port is not connected.

| ok || cancel Apply.

Figure 1.12: GNU Radio sources — Audio
Source

UHD: USRP Source:
] Seme Rate (sps: 220

Ch: Center Freq (Hz): 0
Cho: Gain Value: 0

Properties: UHD: USRP Source

General | RF Options | FE Corrections | Advanced Documentation

D |uhd_usrp_source_0 h
Output Type | Complex floats2

Wire Format Automatic S

Stream args

Stream channels

Device Address
Device Arguments
sync |domtsync 3

Clock Rate (Hz)

Default -

Num Mboards. v

1

Source - 0uL(0):
Port is not connected.

| ok || cancel Apply.

Figure 1.14: GNU Radio sources — UHD: USRP
Source

RTL-SDR Source
‘Sample Rate (sps): 32k
Cho: Frequency (1

Properties: RTL-SDR Source

General| Advanced Documentation

General | Advanced | Documentation
D |blocks_wavfile_source_0]
rie l]
Repeat |ves 3

Source - out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.13: GNU Radio sources — WAV File
Source

‘osmocom Source
‘Sample Rate (sps): 32k
Cho: Frequeney (Hz): 1001
Cho: Freq. Corr. (ppm): 0

Properties: osmocom Source

General| Advanced | Documentation

ChO: DC Offset Mode: Off D |osmosdr_source_0 A
Cho: 1 Balance Mode: Off
Cho: Gain Mode: Manual Output Type complex Float32

: 1

&) L
sync |don'tsync 2
mmbesrts [[]
Mbo: Clock Source | Default -
Mbo: Time Source | Default e

Num Channels |1 -

cho:

Device Arguments

Source-out(0):
Portis not connected.

| oK | cancel Apply

Figure 1.15: GNU Radio sources — osmocom
Source

Funcube Dongle Source
Device Name: huel

Properties: Funcube Dongle Source

General | Advanced | Documentation

Cho: Freg. Corr. (ppm): 0

ChO: DC Offset Mode: O D [rtlsdr_source_ 0 K
Cho: 1Q Balance Mode: Off
Cho: Gain Mode: M: Output Type | Complex float32

sync | don'tsync
Num Mboards 1 v
MbO: Clock Source Default v
Mb0: Time Source Default v
Num Channels 1 v

Source - out(0):
Port s not connected.

:20
Cho: BB Gain (dB): 20

| ok || cancel Apply

Figure 1.16: GNU Radio sources — RTL-SDR
Source

Frequency (Hz): 145.5M
2

D
Device Name

Frequency (Hz)

1Q gain batance: 1 LNA Gain (dB)

Mixer Gain (dB)
Frequency corr. (ppm)
DC | offset
DC Q offset
10 phase balance

1Q gain balance

Source - out(0):
Portis not connected.

| ok || cancel Apply

Figure 1.17: GNU Radio sources — Funcube
Dongle Source

13

1.4.2 GNU Radio Sinks
Null Sink — Fig. 1.18
File Sink — Fig. 1.19
TCP Sink — Fig. 1.20

—_

TCP Server Sink — Fig. 1.21
. UDP Sink — Fig. 1.22

Audio Sink — Fig. 1.23
WAV File Sink — Fig. 1.24
UHD: USRP Sink — Fig. 1.25

Y ® N ok WD

osmocom Sink — Fig. 1.26

Properties: Null Sink - File Sink Properties: File Sink

|General|| Advanced | Documentation B unoutere: or General|| Advanced | Documentation
— Append fle: Overurite | |
D |blocks_null_sink_0 J D |blocks _file_sink_0 J
Input Type | cComplex 3 | File [|

Bus Connections [[[0,],]

Unbuffered |off v
Append file |overwrite v
sink -in(0): sink -in(0):
Port is not connected. Portis not connected.
OK || cancel | Apply OK || cancel || Apply

Figure 1.18: GNU Radio sinks — Null Sink Figure 1.19: GNU Radio sinks — File Sink

TCP sink
Address: 127.00.1

TCP Server sink - .
Properties: TCP Sink Destination 1p Address: Properties: TCP Server Sink

W ocSinacion por:

s Clent (General| Advanced | pocumentation e General | Advanced Documentation
D [blks2_tcp_sink_0 | D | blocks_tcp_server_sink_0 |
Input Type | complex ;| Input Type | Complex 3|
Mode ‘Client - Nonblocking Mode ‘L‘
sink - in(0): Sink -in(0):

Portis not connected. Port s not connected.

Param - Destination Port(port):
Value ™ cannot be evaluated:
Cannot evaluate empty statement.

OK J| Cancel || Apply ok || cancel || Apply

Figure 1.20: GNU Radio sinks — TCP Sink gl:gl;:‘e 1.21: GNU Radio sinks — TCP Server
in

14

UDP Sink
Destination IP Address:

Properties: UDP Sink
General|| Advanced | Documentation

General | Advanced | Documentation

D blocks_udp_sink_0] D audio_sinl

Destination Port
Payload Size
Send Null Pkt as EOF

OK to Block. |Yes 3

Vec Length

Sink-in(0):
Portis not connected.

Sink -in(0):

Port is not connected.
Param - Destination Port(port):

Value " cannot be evaluated:

Cannot evaluate empty statement.

| ok || cancel Apply [ok || cancel Apply

Figure 1.22: GNU Radio sinks — UDP Sink Figure 1.23: GNU Radio sinks — Audio Sink

Wav File Sink

Properties: Wav File Sink

UHD: USRP Sink.

Bl sampie Rate:52¢

e General| Advanced | Documentation occonsriuatin General|| RF Options | Advanced | Documentation
D |blocks_wavfile_sink_0] TSB tag name: D |uhd_usrp_sink_0]
ile | Input Type | Complex float32 :
aispersampie S ——
i
Sync |don'tsync 2
e
sink-in(0): Sink -in(0):
Portis not connected.

Port is not connected.

| ok || cancel Apply

| ok || cancel Apply

Figure 1.24: GNU Radio sinks — WAV File Sink ?:gl;:e 1.25: GNU Radio sinks — UHD: USRP
in

(General | Advanced | Documentation
D |osmosdr_sink_0 A
Input Type | complex floats2 :
Sync |dontsync =
Num Mboards 1 v
Mb0: Clock Source Default v
Moo: TmeSource [Default | v
Numchannels (1 v

Sink-in(0):
Port is not connected.

| oK | Cancel Apply

Figure 1.26: GNU Radio sinks — osmocom Sink

1.4.3 GNU Radio Instrumentation Sinks
1. QT GUI sinks

(a) QT GUI Sink — Fig. 1.27

(b) QT GUI Constellation Sink — Fig. 1.28
(c) QT GUI Frequency Sink — Fig. 1.29
(d) QT GUI Histogram Sink — Fig. 1.30
(e) QT GUI Number Sink — Fig. 1.31

(f) QT GUI Time Raster Sink — Fig. 1.32
(g) QT GUI Time Sink — Fig. 1.33

(h) QT GUI Vector Sink — Fig. 1.34

(i) QT GUI Waterfall Sink — Fig. 1.35

2. WX GUI sinks

(a) WX GUI Constellation Sink — Fig. 1.36
(b) WX GUI FFT Sink — Fig. 1.37

(c) WX GUI Histo Sink — Fig. 1.38

(d) WX GUI Number Sink — Fig. 1.39

(e) WX GUI Scope Sink — Fig. 1.40

(f) WX GUI Terminal Sink — Fig. 1.41

(g) WX GUI Waterfall Sink — Fig. 1.42

°'°‘"45K‘"k Properties: QT GUI Sink Properties: QT GUI Constellation Sink
| |General| Advanced Documentation |General| Trigger Config Advanced Documentation
Type | Complex | Type

Name

s R

D |qtgui_sink x_0 Iy [} |qtgui_const_sink_x_0 J
Number of Points

Window Type | Blackman-harris v Grid
Sondith () Samp_fate | ¥min
ShowRFFreg |No 3 X min
Plot Frequency \Dni o Xmax

Number of Inputs

sink-in(0): !
Portis not connected. Update Period
GUI Hint

Ok || cancel || Apply ok || cancel || apply

Figure 1.27: GNU Radio instrumentation sinks — Figure 1.28: GNU Radio instrumentation sinks —
OT GUI Sink QT GUI Constellation Sink

16

QT GUI Frequency Sink

Properties: QT GUI Frequency Sink

Trigger Config Advanced Documentation

Bandwidth (Hz): 32k

i} |qtgui_freq_sink x_0

Complex =

Name
FFT Size
Window Type Blackman-harris 2

Grid No :

Autoscale No :

Average None &

—_—

Number of Inputs

ok Cancel Apply

Figure 1.29: GNU Radio instrumentation sinks —
OT GUI Frequency Sink

Properties: QT GUI Number Sink
Config | Advanced | Documentation

QT GUI Number Sink.
Autoscal

0 ver

Graph Type: Horizontal

L) qtgui_number_sink_0 e
Input Type Float 3
Autoscale No

wesse CU
Graph Type Horizontal 2

o

S |\
Sink-in(0):

Portis not connected.

oK Cancel Apply

Figure 1.31: GNU Radio instrumentation sinks —
OT GUI Number Sink

Q7 GUI Time sink

Number of Points: 1024k

W surmple Rate: 2
Autoscale: o

Prope:

r Config Advanced Documentation
k x_0)l

D |qtgui_time s
Type

Name

Complex

Y Axis Label
¥ Axis Unit
Number of Points
Sample Rate
Grid
Autoscale

Ymin

Y max
Number of Inputs
Update Period

Disp. Tags Yes 3

G |

oK Cancel Apply

Figure 1.33: GNU Radio instrumentation sinks —

OT GUI Time Sink

QT GUI Histogram Sink
Number of Points: 1.024k
Number of Bins: 100
Autoscale: Yes

Properties: QT GUI Histogram Sink

Config Advanced Documentation

Accumulate: No D |qtgui_histogram_sink x_0]l
Type Float =
st 0280
Grid No
Autoscale Yes
Accumulate No 3
Min is.

Max x-axis
Number of Inputs
Update Period

GUI Hint.

oK Cancel Apply

Figure 1.30: GNU Radio instrumentation sinks —
OT GUI Histogram Sink

QT GUI Time Raster Sink
===

Num. Rows:

Num, Cols:

nk

Sample Rate
Num. Rows
Num. Cols
Grid
Int. min
Int. max

Multiplier

Param - Num. Rows(nrows):
Value " cannot be evaluated:
Cannot evaluate empty statement.

Param - Num. Cols(ncols):

Value ™" cannot be evaluated:
Cannot evaluate empty statement.

oK Cancel Apply

Figure 1.32: GNU Radio instrumentation sinks —

QT GUI Time Raster Sink

QT GUI Vector Sink.
Vector Size: 1,024k

X-Axis Start Value: 0
X-Axis Step Value: 1

Properties: QT GUI Vector

Config Advanced Documentation

I xAxis et -z o
Y-Axis Label: y-Axis
XeAxis Units: Name
Vi U ector sie
XcAxis Start Value
XoAxis Step Value
XoAxis Label
YoAuis Label
Yehxis Units
Ysis Units
Ref Level
Grid
sink - in(0):

Port is not connected.

oK Cancel Apply

Figure 1.34: GNU Radio instrumentation sinks —
OT GUI Vector Sink

17

QT GUI Waterfall Sink
FFT Size: 1.024k

B conter Freauency (zr:0

Bandwidth (Hz): 32k

Properties: QT GUI Waterfall Sink

Config Advanced Documentation

D |qtgui_waterfall_sink x_0 Nl
Type Complex -
Name
FFT Size
Window Type

Center Frequency (Hz)
Bandwidth (Hz)
Intensity Min

Intensity Max

Grid No
Number of Inputs
Update Period

GUI Hint,

ShowMsg Ports | No

Apply

OK Cancel

Figure 1.35: GNU Radio instrumentation sinks —
OT GUI Waterfall Sink

WX GUI FFT Sink
Title: FFT Plot.
Sample Rate: 32k

Properties: WX GUI FFT Sink

Advanced Documentation
) |wigui_ffesink2_0 g

Complex 2

¥ per Div: 10 6B
¥ Divs: 10

RefLevel (dB): 0

Sample Rate

Baseband Freq
Y per Div
Y Divs
Ref Level (dB)
Ref Scale (p2p)

FFTSize

Can't generate this blockin mode: 'qt_gu’

sink -in(0):
Port is not connected.

Apply

oK Cancel

Figure 1.37: GNU Radio instrumentation sinks —
WX GUI FFT Sink

WX GUI Number Sink
Title: Number Plot.

Properties: WX GUI Number Sink

Advanced | Documentation

WX GUI Constellation Sink
Title: Constellation Plot
‘Sample Rate: 32

Frame Rate: 5

Constellation Size: 2,048

Prope VX GUI Constellation Sink

Advanced | Documentation

D
Title

Sample Rate
Frame Rate

Constellation Size

M
Theta
Loop Bandwidth
Max Freq
My

Gain Mu

(Can't generate this block in mode: 'qt_gui*

sink -in(0):
Port is not connected.

Apply

oK Cancel

Figure 1.36: GNU Radio instrumentation sinks —
WX GUI Constellation Sink

Properties: WX GUI Histo Sink
Advanced Documentation
[} wxgui_histosink2_0

Mum Bins

WX GUI Histo Sink
Title: Histogram Plot

Frame Size
Window Size

Grid Position

Notebook

Can't generate this block in mode: 'qt_gui’

sink - in(0):
Portis not connected.

Apply

oK Cancel

Figure 1.38: GNU Radio instrumentation sinks —
WX GUI Histo Sink

WX GUI Scope Sink

3

Properties: WX GUI Scope
Title: Scope Piot
il sample Rate: 326

Trigger Mode: Auto

Advanced Documentation

Can't generate this block inmode: ‘qt_gui

sink-in(0):
Port is not connected.

Apply

oK Cancel

Figure 1.39: GNU Radio instrumentation sinks —
WX GUI Number Sink

18

D [wxgui_ ink2_0]‘ Y Axis Labet: Counts -] [wxgui_scupesinkz_o "A
Type Complex * Type Complex 2
it Nomberelot e SscopePlot
ot GRS samplenate samp_ratel T
somplerie [sampiate vsede U
wnvee 00l voret ol
o O CEG I
oecimalriaces 0L ot
refeence Lovel (ORI Num inputs

Can't generate this block inmode: 'qt_gui’

sink -in(0):
Port is not connected.

Apply

oK Cancel

Figure 1.40: GNU Radio instrumentation sinks —
WX GUI Scope Sink

Properties: WX GUI Terminal Sink

WX GUI Waterfall Sink
Title: Waterfall Plot
‘Sample Rate: 32k

General| Advanced | Documentation
wx

Window Size
Grid Position

Notebaok

Can't generate this block in mode: "qt_gui'

sink -in(msg):
Portis not connected.

oK Cancel

Figure 1.41: GNU Radio instrumentation sinks —

WX GUI Terminal Sink

Oy Renoe: 100

Reference Level: 0
Ref Scale (p2p): 2

FFT Size: 512

FFT Rate: 15

Freq Set Varname: None

Properties: WX GUI WaterFall Sink

Advanced | Documentation

D | wxgui_waterfallsink2_0 I
Type Complex 3

Sample Rate
Baseband Freq
Dynamic Range
Reference Level
Ref Scale (p2p)

FFT Size

FFT Rate

fverane Lo = |

Can't generate this block inmode: 'qt_gui"

Sink -in(0):
Port is not connected.

ok cancel Apply.

Figure 1.42: GNU Radio instrumentation sinks —
WX GUI Waterfall Sink

—

9

20 Chapter 2

Selected Radio Signal Applications
in GNU Radio

This section contains proposals of the receivers and transmitters for three basic analog
modulations: Amplitude Modulation (AM), Frequency Modulation (FM) and Single Side
Band (SSB) Modulation. Proposed receivers and transmitters do not utilize real RF hard-
ware (with the exception of the last one example), the RF signal from the transmitter to
the receiver is sent via a network socket using ZMQ blocks. All of the presented propos-
als are based on the ideas shown in official GNU Radio Tutorials [3], however they are
made from scratch showing all the parameters necessary to make the flowgraphs running
withour errors. These examples were tested under GNU Radio 3.7.11.

The descriptions of the modulations schemes are omited here since they are widely
spread in numerous sources.

2.1 Amplitude Modulation (AM)

This subsection presents Amplitude Modulation (AM) Transmitter and Receiver.

2.1.1 AM Transmitter

AM transmitter flowgraph is shown in Fig. 2.1. The parameters of the building blocks
are following:

« Variable:
— samp_rate = 768 kHz

(gives the 48 kHz carrier frequency 16 samples in every cycle)

« Audio Source:

— Sample Rate = 48 kHz
» Repeat:

— Interpolation = 16

(boosts the audio sample rate to the system sample rate)
« QT GUI Range defines Audio gain (= volume variable) controls
+ Multiply Const:

— Constant = volume variable

« Add Const:
— Constant = 1

(creates AM carrier in the absence of the audio signal)

« Signal Source:

— Frequency = 48 kHz
— Amplitude = 1

(generates carrier signal frequency)
« QT GUI Time Sink:
- Number of Points = 4096

(shows visual representation of the transmitted signal)

+ ZMQ PUB Sink:
— Address = tcp://127.0.0.1:50222

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the AM signal carrying
audio signal recorded with microphone. QT GUI Time Sink will show changing pattern
of the signal, modulation level could be adjusted with the volume control in QT GUI
Range block. The output signal can be demodulated by the receiver described in the next
subsection.

2.1.2 AM Receiver

AM receiver flowgraph is shown in Fig. 2.2. The parameters of the building blocks are
following:

« Variable:

— samp_rate = 768 kHz
« Variable:

— decim = 16

(defines the decimation factor to reduce the incoming sample rate by 16 in order
to get an audio sample rate of 48 kHz for the Audio Sink block)

« ZMQ SUB Source:
- Address = tcp://127.0.0.1:50222

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

21

032540
wgos sapnydwy
A8t :Aauanbaig -
SUISOT) UGS AR
389/ sajey ajdwes
anos Jeub)s

op :sBe) sseyd
00T :(23sw) Inoawiy

Aidinw
ZZTOST'0 /) isS2uppY

7T uejsuo) 9T :uelejodiaju] ZHygt :2jey sjdwes
3juls and bWz isuod ppy 1suo) Adpn jeaday a2unos o1pny

op :2easeIny

489/ rajey sjdwes

3960°t 153Ul Jo J2quiny
quis awiL IN9 Ld

wpQt 335
01 :doas
0:Hes N9 1O :suopdg 33esauan
T'T :anjep ynejaq 3|0 zsnib|way doyany
ujed opny :aqe 489 anjep JERIsUR WY SRl
awnjon :q| ajes dwes :q)| ¥} we :q|
afiuey In9 10 I|qeuep suondo

Figure 2.1: GNU Radio — AM transmitter flowgraph

22

« Frequency Xlating FIR Filter:
— Type = Float->Complex (Real Taps)

— Decimation = decim

— Taps = firdes.low_pass(1,samp_rate,samp_rate/(2*decim), 2000)

Center Frequency = 48 kHz

Sample Rate = samp_rate
(performs frequency translation, filtering and decimation)
« AGC (Automatic Gain Control):
— default values
(adjusts the input signal to the given reference level)
« Complex to Mag:
- no values

(calculates magnitude of the complex samples in order to restore original modula-
tion signal)

« Band Pass Filter:
- FIR Type = Float->Float (Real Taps)(Decim)

— Decimation = 1

- Gain=1

Sample Rate = (int)(samp_rate/decim)
Low Cutoff Freq = 500 Hz

- High Cutoff Freq = 6 kHz

— Transition Width = 400

« QT GUI Range defines Audio gain (= volume variable) controls
« Multiply Const:

— Constant = volume variable
« QT GUI Time Sink:

— Sample Rate = (int)(samp_rate/decim)
— Number of Points = 256

(shows visual representation of the received signal)

« Audio Sink:

— Sample Rate = 48 kHz
— OK to Block = Yes

After compiling and executing the flowgraph, it will receive the AM signal from a net-
work data socket connected to the transmitting section described in the previous subsec-
tion. QT GUI Time Sink will show changing pattern of the signal.

23

909 e3ag
BujLey <Mmopulm

ZHNar :a3ey aydwes WODE $JueysuS)
}uls e|pny Isuod Aldninw

00F ‘YIPIM uoiysuel] A9EGST ‘uleD XepW

489/ r33ey 3jdweg

quis 3wl N9 1O 133114 ssed pueg

wqg :dayg
1 :do3s
0 :Je3s
WoE :anjep yunejaqg
3wnjop Jjaqe]
awnjon :al

3Buey |N9 Lb

g 1baug yond ybiy T:uen 38t :Asuanbaly Jajua) -
005 baid yoyny moq E 1 :eauaJtajay es'T)ssed mo|'sapiy ssdey
On :3jeasoIny Jar ia1ey aydwes NSz 2aey 91 uonewWz2g
A3t :a1ey Sdwes T:ueg J9v 43M1d Hid Bupe(x Adusnbay
957 :s3ujod Jo Jaquiny 1 uopewaq

g1 :anjep
wi33p 1
a1qeues

AB9L INjep
231 dwes :q|
3jqeuep

op :sbey ssed

00T :(33sw) ynoauwy

ZZTOSTO /D23 1SSAUPPY
anos Ans OWZ

N9 1D :suoido sjesauas
Aiufzi0 zsniBiway doyany
13M1333Y WY 3L
wTwe g

suopdo

Figure 2.2: GNU Radio — AM receiver flowgraph

24

2.2 Frequency Modulation (FM)
This subsection presents Narrow Band Frequency Modulation (NBFM) Transmitter and
Receiver.

2.2.1 NBFM Transmitter

FM transmitter flowgraph is shown in Fig. 2.3. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 48 kHz
« Variable:
— usrp_rate = 576 kHz
« Variable:
— if_rate = 192 kHz
« QT GUI Range defines Audio gain (= audio_gain variable) controls

« QT GUI Chooser defines three PL tones — pl_freq variable: 0 Hz, 67 Hz and 71.9 Hz
« Audio Source:
— Sample Rate = 48 kHz
« Band Pass Filter:
— Decimation = 1
- Gain=1
— Sample Rate = samp_rate
— Low Cuttoff Freq = 300 Hz
- High Cutoff Freq = 5 kHz
— Transition Width = 200
- Window = Hamming

- Beta =6.76
« Multiply Const:

- audio_gain variable
« Signal Source:

— Sample Rate = 48 kHz
- Waveform = Sine

— Frequency = pl_freq

25

— Amplitude = 0.150
— Offset=0

« NBFM Transmit:

Audio Rate = 48 kHz
Quadrature Rate = if_rate
Tau = 0.000075

— Max Deviation = 5000

Preemphasis High Corner Freq = -1
« QT GUI Sink:

— FFT Size = 1024

Center Frequency = 0 Hz
Bandwidth = if rate
Update Rate = 10

« Low Pass Filter:

Decimation = 1

- Gain=1

— Sample Rate = if_rate
Cutoff Freq = 5 kHz
Transition Width = 2000

Window = Hamming

Beta = 6.76

» Repeat:
— Interpolation = 3
(multiplies if_rate in order to get usrp_rate)
+ ZMQ PUB Sink:
— Address = tcp://127.0.0.1:49999

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the FM signal carrying
audio signal recorded with microphone. Modulation level could be adjusted with the
volume control in QT GUI Range block. The output signal can be demodulated by the
receiver described in the next subsection.

26

op :sbe) ssey

00T :(22sw) ynoawn]y

6666110 T/:d] issauppy
quis And OWZ

£ tuenejodiagul
yeaday

0T :@3ed a3epdn
3Z6T :{ZH) IpIMpueg
0 :{zH) Aauanbaig 12jua)y
70T 1225 144

Auis IN9 1D

9.'g te3ag

Buwwey :mopuipm

3T JYIPIM UoiysuRIL

45 ibaid gondy

36T ia3ed ajdwes

1 :ujen

T Juoiewssg
133114 ssed mo

[Fea—

1- (baudq Jauion YyBiH siseydwaaid
35 JUOPEIASQ XEW

4Z6T 93ey aJnjedpend
A8t 312y cpny

ngy ey

6TL iz 12qe]
&1L sz uopdo
0°L9 T 12qe]
(9 T uodo

032540
WSt :apnyjduy
0 :Rauanbaig
3UIS IO NEM
gt rajey sdwes
2anos |eub)s

S IuEIsUL)
Jsue) Aidpinw

0°0:0129e]
0 :g uopdo

0 :anjep ynejag
£ ssuepido wny
3uol Td 12qe]
bayyid @y
4350043 IND LO

9L'9 el=ag
Buwwey :Mmopuip
00Z *HIPIM uojysuel]
35 ibaud yoand ybiy
00€ :baug yoan) mo
38 :2qey sjdwes
T:umey
T ruoijewi>aq

J33]14 ssed pueg

38t :2aey sjdwes

asunes olpny

H9L5 ianjep
e disn g
wgoT :daas
J|qeuep
01 :doag
0:ues N9 LD :suepdg sjei3uss
5 i@njep ynejeq ulz10 ZsniBlway doyany
[2A3] UED OIpNY Jjaqe] AZET -=njep A8t enjep JEWsUR W4 9N sSML
ueh opne gy BT || 230 dwes g ¥jqu g
afuey IND 1O |qeuep F|qeuep suendo

Figure 2.3: GNU Radio — FM transmitter flowgraph

27

2.2.2 NBFM Receiver

FM receiver flowgraph is shown in Fig. 2.4. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 576 kHz
« Variable:
— rf_decim =3
+ Band-pass Filter Taps:
— ID = channel_filter
— Tap Type = Complex
- Gain=1
— Sample Rate = samp_rate
— Low Cuttoff Freq = -3 kHz
- High Cutoff Freq = 3 kHz
— Transition Width = 200
- Window = Hamming
— Beta = 6.76
(defines Filter Taps for the FFT Filter block)
« QT GUI Range defines VOLume level (= VOL_level variable) controls
« QT GUI Range defines SQueLch level (= SQL_level variable) controls
« ZMQ SUB Source:

- Address = tcp://127.0.0.1:49999

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

- FFT Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = rf _decim
— Taps = channel _filter
— Num. Threads = 1
« Simple Squelch:

— Threshold = -50 dB
— Alpha=1

28

« NBFM Receive:

Audio Rate = 48 kHz
Quadrature Rate = 192 kHz
Tau = 0.000075

— Max Deviation = 5000

« Multiply Const:

— VOL_level variable
« Audio Sink:

— Sample Rate = 48 kHz
« QT GUI Waterfall Sink:

— FFT Size = 1024
— Center Frequency = 0 Hz

— Bandwidth = samp_rate

(shows a waterfall spectrum display with visual representation of the received sig-
nal)

After compiling and executing the flowgraph, it will receive the FM signal from a network
data socket connected to the transmitting section described in the previous subsection.
QT GUI Waterfall Sink will show changing pattern of the signal. GUI windows with
Volume and Squelch controls allow for controling received signal.

2.3 Single Side Band (SSB) Modulation

This subsection presents Single Side Band (SSB) Modulation Transmitter and Receiver.

2.3.1 SSB Transmitter

SSB transmitter flowgraph is shown in Fig. 2.5. The parameters of the building blocks
are following:

« Variable:

- samp_rate = 192 kHz
« Variable:

— audio_rate = 48 kHz
« Variable:

— carrier_freq = 16 kHz

29

39(5 :(ZH) YiIpIMpueg
ZHWgY :2aey adwes wgs jueisuey 0 :(zH) Aduznbalg s2quad

juls o|pny 1suc) Kldpin 20T 1325 144
JUuIS [leH33EM IND LD

45 suonEA3] XelY

ng/ snejy

YZ6T :ajey ainjeipend

A8F 1232y olpny
3A1223Y W4EN

op :sBe] ssed

00T :(22sw) InoawiL

66667107 T/+d1] issauppy
22Unos gns OWZ

1 :speasy] wny
123y [2uueyd ssdey
£ iuspew|Iag
43314 144

T :eydiy
05- :(@P) PloysaiyL
y22nbs ajdw)s

9.'9 :e32g
Guwue :Mopuip
007 *(ZH) YIPIM uoisuRll
wps :days 5 ;s 4€ :(zH) baud yoand ubiH
00T :doys 0:dols 3E- :(ZH) badg yoin) mo
0:Mes 00T- :Me3s 395 (zH) 23ey ydwes N9 10 :suondp 23ei2u29
wps :anjep ynejaq 05- :anjep Ynejaq 1:ues Huf210 zsn|bjway aoyany
[2A3] 3WNIOA 12qe [3A3] Y373n05 Haqe w3|dwo) radfy deyg £ :anjep 394G anjey 13M1233Y W4 8N SBUL
12721 10A I 221105 I SEMITETITLIRE | w33 4 ial 2384 dwes :ql ®iLyqu gl
abuey In9 LD abuey IN9 LO sde] 43314 ssed-pueg ajqeuep ajqenep suopdo

Figure 2.4: GNU Radio — FM receiver flowgraph

30

« Variable:
- interp = 4
« QT GUI Range defines Audio gain (= volume variable) controls
« Audio Source:
— Sample Rate = samp_rate
« Multiply Const:
— volume variable
« Repeat:
— Interpolation = interp variable
(boosts the audio sample rate to the system sample rate)
« Constant Source:
— Constant = 0
« Float to Complex
(converts float data into complex numbers)

« Signal Source:

Sample Rate = samp_rate

Waveform = Sine

— Frequency = carrier_freq
— Amplitude = 1
- Offset=0

« Multiply
(creates modulated SSB signal)
« Band Pass Filter:

— Decimation = 1

- Gain =1

— Sample Rate = samp_rate

— Low Cuttoff Freq = 16.3 kHz
- High Cutoff Freq = 19 kHz
— Transition Width = 200

- Window = Hamming

— Beta=6.76

(creates SSB signal by passing one (upper) sideband only and rejecting the other —
the filter method)

31

« QT GUI Frequency Sink:

- FFT Size = 1024
— Center Frequency = 0 Hz

— Bandwidth = samp_rate
« ZMQ PUSH Sink:
— Address = tcp://127.0.0.1:50333

(generated signal is sent to a network data socket connected to the receiving section
on the same computer)

After compiling and executing the flowgraph, it will transmit the SSB signal carrying
audio signal recorded with microphone. QT GUI Frequency Sink will show changing
pattern of the signal, modulation level could be adjusted with the volume control in QT
GUI Range block. The output signal can be demodulated by the receiver described in the
next subsection.

2.3.2 SSB Receiver

SSB receiver flowgraph is shown in Fig. 2.6. The parameters of the building blocks are
following:

« Variable:
— samp_rate = 192 kHz
« Variable:
— audio_rate = 48 kHz
« Variable:
— carrier_freq = 16 kHz
+ Variable:
- decim =4
+ QT GUI Range defines Tuning (= tuning variable) controls:

Start = 11000

— Stop = 21000

Step = 100

Default Value = 17500

« QT GUI Range defines Fine Tuning (= bfo variable) controls:

— Start=0
- Stop = 3000

32

AZ6T *(ZH) yIpImpueg
0 :(zH) Aouanbaig Jagua)

HpZO'T 22215 144
juys Asusnbaid 1ND LO

9L'9 i=ag

Gujuwwey :mopuim
00T YIPIM UOSURLL
46T :baud yoand ybiH

t ruonejodiaju)
yeaday

-

0T :JuE3suC)
3suo) Aidinw

H3¢ erey sjdwes
alnos olpny

HE'9T {haid Yoand moq

xajdwo) oy jec|d

op :sbe) ssed
00T :(32sw) ynoawyy
EEE0ST'0"T/d2) Ssa1ppy

juls HSNd DNZ

Adpinw

Z6T +e3ey 3jdwes

1:uen
T :uopewidag
123114 ssed pueg

0:19540
1 :apnydwy

Yo :K balg

0 :juejsue)
332UN0§ JueISUS)

ENE- TN TETY-7T Y
AZ6T :21ey ajdwes
2aunos |eubis

wggt :daag

oz :doas

0 :ueIs

0T :@njeA ynejaq

awnjop aqe

Iwnjoa :al
abuey IN9 10

9T anjep T ianjepn
baiy 1aued gy uonejodisjul :qy
a|qe| ajqe|
qeuep 1qeuep N9 10 °
A0 ZsnIB|WSY HoyIny
A8F ranjEA AZ6T =njep J3niwsuel] gss tuL
2380 olpne :a| 2181 dwes ;a1 ¥ 0ss :al
3|qelen Jqepep suopdo

Figure 2.5: GNU Radio — SSB transmitter flowgraph

33

- Step =10
— Default Value = 1500

« QT GUI Range defines Audio gain (= volume variable) controls:

- Start =0
- Stop=1
- Step = 0.050

Default Value = 0.500

« QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)
« ZMQ PULL Source:

— Address = tcp://127.0.0.1:50333

(the signal is received from a network data socket connected to the transmitting
section on the same computer)

« Frequency Xlating FIR Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = decim
— Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

— Center Frequency = tuning

Sample Rate = samp_rate

(performs frequency translation, filtering and decimation)

« Complex to Float:
— no values

(converts complex numbers into floats)

« Signal Source:

Sample Rate = audio_rate
- Waveform = Cosine

— Frequency = bfo

— Amplitude = 1

— Offset=0
« Multiply:
— no values

(multiplies signals)

34

« Multiply Const:
— Constant = 1
o Add:
— no values
(adds signals)
« Multiply Const:
— Constant = volume variable
« Audio Sink:
— Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a net-
work data socket connected to the transmitting section described in the previous sub-
section. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.3.3 SSB Receiver — 1I/Q Signal from the File

The flowgrpah of the SSB receiver taking I/Q signal from the file is shown in Fig. 2.7. The
parameters of the building blocks are following:

+ Variable
- samp_rate = 256 kHz
+ Variable
— audio_rate = 32 kHz
« Variable
— carrier_freq = 53 kHz
+ Variable
- decim =8
+ QT GUI Range defines Tuning (= tuning variable) controls:

Start = 48000

Stop = 58000

Step = 100

Default Value = 51500

35

0319540

1 :apnyduwy

35T :Aauanbaug -
3UIS07) WIOJIREM

gt :a3ey Jjdwes

aunos |eub)s

1 ueysuc)
1su0) AldRInW

Adin

jeol4 oL xajdwo)

3Z6T 212y 3jdwes

3541 :Aouanbaug saqua)
'0°L)ssed mopsaply sdey
¥ uopewWIag

123114 HId Bunejy fHuanbay

gy :eaey ajdwes
3uls olpny

e

Lugos JueIsue)
1suod Aidini

032540
T :apnydwy

Adin

35T :Aauanbaiy -
IS0 SWIOINEM
38t :a3ey ajdwes

op :sbe] sseqd
00T :(32sw) ynoawny

£EE0S'T0" T//d2) :5524pRY

2a4nes 11Nd DWZ

857:T 12qe] B ELE
T:Tuendo
85M :0 12qe] wog :dags 01 :daag 00T :daas
1-:0 uepdo 1:dois e :dols A1Z :do3s
1 :anjep Ynejag 0:1es 0:Mes AT :HeIs
7 :suopd o wny QoS :anjeA ynejag 35T :@njep Ynejag 3G'LT :@njep Yneyaq
857/ @sn sRqen awnjo) jaqe Buny auly zjaqe Buny ;aqe
ESELET [3wnjoa gl oJg a1 Bung :qi
Jasooyd IND 10 abuey IN9 1O afbuey N9 1O afbuey N9 LO

H9T =njep tranjep
bayy 1aLued :qy wi33p :qy
3|qeuep a|qenep -
N9 1o 033 2
Hufa10 zsniBlwaY oyny
A2p anjep AZET anjep 13A1333Y G55 3L
a3es olpne :q| a3es dwes :q) *gss :ql
3|qeuep 3|qeuep suopdg

Figure 2.6: GNU Radio — SSB receiver flowgraph

36

QT GUI Range defines Fine Tuning (= bfo variable) controls:

— Start =0
— Stop = 3000
- Step =10

Default Value = 1500

QT GUI Range defines Audio gain (= volume variable) controls:

- Start =0
- Stop=1
- Step = 0.050

Default Value = 0.200

QT GUI Chooser allows to choose Upper of Lower Sideband (USB/LSB)

File Source:

— File = ssb_lsb_256k_complex2.dat
- Repeat = yes

(the signal is taken from the file, it is necessary to download it from https: //www.
csun.edu/~skatz/katzpage/sdr_project/sdr/ssb_lsb_256k_complex2

.dat.zip)

Multiply Const:
— Constant = 0.0001

Frequency Xlating FIR Filter:
- Type = Complex->Complex (Complex Taps)
— Decimation = decim

— Taps = firdes.low_pass(1.0, samp_rate, 3000, 100)

Center Frequency = tuning

Sample Rate = samp_rate
(performs frequency translation, filtering and decimation)
Complex to Float:
— no values
(converts complex numbers into floats)
Signal Source:

— Sample Rate = audio_rate
- Waveform = Cosine

- Frequency = bfo

37

— Amplitude = 1

— Offset=0
« Multiply:
— no values

(multiplies signals)

. Add:
— no values

(adds signals)
« Multiply Const:

— Constant = volume variable

Audio Sink:

— Sample Rate = audio_rate

After compiling and executing the flowgraph, it will receive the SSB signal from a pro-
vided file. QT GUI Range controls allows to tune to the signal, fine tune to the signal and
adjust volume. QT GUI Chooser allows to change sideband (USB or LSB).

2.4 RTL-SDR Based WFM Receiver

In Fig. 2.8 a simple example of the broadcast WEM receiver is presented. It consists of
RTL-SDR Source block as a radio signal source, FM Demod block as a FM demodulator,
Multiply Const block supplying a volume value for the audio level and Audio Sink block
that allows playing audio signal.

The parameters of the building blocks are following:

« Variable

— samp_rate = 240 kHz
« Variable

- deviation = 75 kHz
« Variable

— audio_decim = 5

« QT GUI Range defines RF Gain (= rf_gain variable) controls:

- Start =0
- Stop =70
- Step=1

Default Value = 50

38

032540
1 -epnuidury

3T :Kouanbaug
BUIS07) TWIOJIARM
3957 :a3ey aydwes
axnos |eub|s

T :uejsue)
Isue) Aidpiny

Adninw

jeold of x3|dwod

13414 Hid Bupepy &

3957 :ajey aydwes
4515 :Aauanbaig Jajua)

1)s5ed Moy sapay isdey

g :uepewag

npoT IueIsUS)
ysuo) AjdpinW

AZE 23Ry Aduieg
Juls o1pny

et

WOz :juesuc)
Isuc) Aldpiny

032540
1 :apnyyduy

Aidninw

¥5'T :Aouanbaig
3UISOT) JUIOJIARM
3Ze :23ey ydwes
adnosg [eubls

8571 12qe]

T:ruendo BT

450 :0 12927 s :da3g o1 :da3g 00T :d=35 Red——

T-:0uondo 1:doys Hg :doig 395 :doyg u_. ey
1:2njea ynej2q 0:Mes 0:uels A2p THEIS
2 :suopdo wnN gz :anieA Ynej2a 35T ianjeA Wneyaa | | 35S (ANIeA Unej2a

851/ 8sn :12qe 2wnjop, ;l2qe] Bujung 2ul ;jaqe Bujuny zjaqe] AzE zanjep 495z anjep

asianal igl awnon :gl 0Jq :al Buuny =gy ajes opne :q| a8l dwes :q

1250043 IND LD aBuey 1IN LD abuey IND 1O aBuey InD 1O a1qeen alqepen

53, jeaday
3ep'Zx3|dwod yg5z 957 13l
axnos a4

N9 10 :suopdg ajesauag
poylaL Janeap) tuopiduasag
Hul210 zsniBlway Jeyyny
J3MI333Y 9SS UL
aly X1 @ss :ql

suondo

Figure 2.7: GNU Radio — SSB receiver flowgraph — I/Q signal from the file

39

« QT GUI Range defines Tuning (= tuning variable) controls:

Start = 87.9 MHz

Stop = 108.1 MHz

Step = 100 kHz

Default Value = 98 MHz

« QT GUI Range defines Volume (= volume variable) controls:

Start = 0
Stop =1
Step = 0.050

Default Value = 0.300

« RTL-SDR Source:

Sample Rate = samp_rate variable
Frequency = tuning variable

Freq. Corr. =0

DC Offset Mode = Off

IQ Balance Mode = Off

Gain Mode = Manual

RF Gain = rf_gain variable

IF Gain = 20 dB

BB Gain = 20 dB

« FM Demod:

Channel Rate = samp_rate variable

Audio Decimation = audio_decim variable
Deviation = deviation variable

Audio Pass = 15 kHz

Audio Stop = 16 kHz

Gain=1

Tau = 0.000075

+ Multiply Const:

Constant = volume variable

« Audio Sink:

40

Sample Rate = (int)(samp_rate/audio_rate)

ZHygE :a1ey ajdwes

Auls e1pny

wpg :dais 00T :da3s
1:doas WT'20T :deas
0iMes WE'LE (uels
WQoE anjep Ynejaq Was sanjep yYnejaq
SWnjan Jjaqe m..__..__._u =2qeq
Swnjos gl m..__..__._“_. al

abuey In9 1d abuey IN9 1D

WNQE sJuejsuoly

1suod Aldpn

ng/ :mejy

T:ued

39T :dols elpny

HST :s58d olpny

HSL uonelAaq

G uopEWRa] ipny

AOFT =23y [2uuey)
powaq W4

1

S :anjep
wi23p olpne :ai
a|qeuen

354 sanjen
uoReINp :al
a|qeuen

1 :das

0f :doyg

NETE T

05 :anjep Ynejaq
ules) 4y jaqe
ued gl
abuey In9 1D

07 :(9p) wes gag :oud

07 :(ap) wes 41 :oud

0T :(@p) wies 4y :0uD

[ENUE :3PolY UlED 04D

40 :apojy 2cuejeg O QU

40 :apol 312540 24 04D

0 (wdd) "1103 "bayg :gud

Wae s(zH) Aauanbaiy toud

407 :(sds) ajey ajdwes
224noes 4as-114

HOPT -enjep
ayes dwes :qj
a|qeuen

IND 1O :suepdQ ajeiauay
Hiula10 ZsnIBIWSY HoyIny

19AI3331 4M 158IpR0Ig SR

¥20iq do3 :al
suondp

Figure 2.8: GNU Radio — RTL-SDR based broadcast WFM receiver

41

42

Bibliography

[1] GNU Radio, https://www.gnuradio.org/

[2] What Is GNU Radio,
https://wiki.gnuradio.org/index.php?title=What_Is_GNU_Radio

[3] GNU Radio Tutorials,
https://wiki.gnuradio.org/index.php?title=Tutorials

43

List of Figures

1.1: GNU Radio — seven blocks connected together form a flowgraph
1.2: GNU Radio — two blocks (Signal Source and Audio Sink) connected with

an arrow showing flow of the signaldata

1.3: GNU Radio — Variable samp_rate block
1.4: GNU Radio — Options top_block block
1.5: GNU Radio signal datatypes
1.6: GNU Radio sources — Null Source
1.7: GNU Radio sources — Noise Source
1.8: GNU Radio sources — Signal Source
1.9: GNU Radio sources — File Source

1.10:
1.11:
1.12:
1.13:
1.14:
1.15:
1.16:
1.17:
1.18:
1.19:
1.20:
1.21:
1.22:
1.23:
1.24:
1.25:
1.26:
1.27:
1.28:
1.29:
1.30:
1.31:
1.32:
1.33:
1.34:
1.35:
1.36:
1.37:

GNU Radio sources — TCP Source
GNU Radio sources —UDP Source
GNU Radio sources — Audio Source
GNU Radio sources — WAV File Source
GNU Radio sources — UHD: USRP Source
GNU Radio sources — osmocom Source
GNU Radio sources — RTL-SDR Source
GNU Radio sources — Funcube Dongle Source
GNU Radio sinks — Null Sink
GNU Radio sinks — File Sink
GNU Radio sinks — TCPSink
GNU Radio sinks — TCP Server Sink
GNU Radio sinks —UDP Sink
GNU Radio sinks — Audio Sink
GNU Radio sinks — WAV File Sink
GNU Radio sinks — UHD: USRP Sink
GNU Radio sinks — osmocom Sink
GNU Radio instrumentation sinks — QT GUI Sink
GNU Radio instrumentation sinks — QT GUI Constellation Sink
GNU Radio instrumentation sinks — QT GUI Frequency Sink .
GNU Radio instrumentation sinks — QT GUI Histogram Sink .
GNU Radio instrumentation sinks — QT GUI Number Sink . . .
GNU Radio instrumentation sinks — QT GUI Time Raster Sink

GNU Radio instrumentation sinks — QT GUI Time Sink
GNU Radio instrumentation sinks — QT GUI Vector Sink
GNU Radio instrumentation sinks — QT GUI Waterfall Sink . .

GNU Radio instrumentation sinks — WX GUI Constellation Sink

GNU Radio instrumentation sinks — WX GUI FFT Sink

1.38: GNU Radio instrumentation sinks — WX GUI Histo Sink 18

1.39: GNU Radio instrumentation sinks — WX GUI Number Sink 18
1.40: GNU Radio instrumentation sinks — WX GUI Scope Sink 18
1.41: GNU Radio instrumentation sinks — WX GUI Terminal Sink 19
1.42: GNU Radio instrumentation sinks — WX GUI Waterfall Sink 19
2.1: GNU Radio — AM transmitter flowgraph 22
2.2: GNU Radio — AM receiver flowgraph 24
2.3: GNU Radio — FM transmitter flowgraph 27
2.4: GNU Radio — FM receiver flowgraph 30
2.5: GNU Radio — SSB transmitter flowgraph 33
2.6: GNU Radio — SSB receiver flowgraph 36
2.7: GNU Radio — SSB receiver flowgraph — I/Q signal from the file 39

2.8: GNU Radio — RTL-SDR based broadcast WFM receiver 41

Wireless Signal Processing in GNU Radio Environment
Study text

Author: dr inz. Remigiusz Olejnik
West Pomeranian University of Technology in Szczecin

Publisher: Mendel University in Brno, Zemédélska 1, 613 00 Brno, Czech Republic
Graphic editing and typesetting: Jifi Rybicka, Pavel Haluza

Year of publishing: 2022

First edition

Number of pages: 46

ISBN 978-80-7509-891-7 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-891-7

