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8 Chapter 1

Introduction to R

One can characterise R as an environment for statistical computing and graphics. It
represents an open source solution to data analysis, and it is free to install under the
GNU general public license.From a programming point of view it is a scripting language.
In this case, a simple text editor is enough for the programmer, so he does not need any
special compiler or development tool.

Besides statistics, R is used in several other areas like the social sciences or biology.
For example, in finance and banking, it is used to detect and identify fraud, in bioinformat-
ics in drug development, or social media analysis when searching for potential customers
for online targeting advertising campaigns. As well many renowned companies such as
Facebook, Google, Linkedin, IBM £ and Twitter use R in their analytical work.

Due to its popularity, the R language has a number of advantages. Let us note at
least some of them:

• it is free, most of the statistical software platforms cost thousands of dollars,
• the program has a huge collection of available packages,
• R can easily import data from a wide variety of sources,
• R contains numerous advanced statistical routines,
• R provides interactive platform for data analysis,
• R environment offers data visualisation in the form very high quality and aesthetic
graphs,

• it is platform independent, it is compatible with all most frequently used operating
systems,

• it is highly compatible with the programming languages like C, C++, Python, Java.

The R language is considered to be the most widespread within the statistical com-
munity. This is the main reason why it is dominant among other programming lan-
guages in the development of statistics tools. Thanks to this expansion, there is a huge
community developers, users and programmers who are willing to help and share their
knowledge with others.

1.1 Installing R

1.1.1 Base installation

Howwe have alreadymentioned, R is freely available from the Comprehensive R Archive
Network (shortly CRAN). Its internet location is https://cran.r-project.org/.
Here are at disposal pre-compiled binaries for all common platforms Linux, Mac OS, and

https://cran.r-project.org/


Windows. Here you can select the most suitable mirror for downloading the installation
package. After downloading it follow the directions for installing the core on the OS
platform you are running.

In the further text we assume working on Linux platform. Because the core of the
R environment is incorporated in the Linux distributions, the Linux must not necessary
download the binaries from the CRAN. They but can use the packaging systems like apt,
rpm, yum etc. The R core is included in the package r-base-core. The extensions to the
base we find in packages r-cran-*, where * means suitable suffix.

Once we have installed R, we can try if it works correctly. We start the R environ-
ment simply from command prompt typing:

username@host:~$ R

If you are using Win or MacOs, you start R by double-click on R icon or you launch
it from Start Menu. Any of these will start the R interface. It contains short introductory
note that is followed by the sign > assigning the R prompt. The R environment is ready
for an interactive mode of work.

R version 3.5.2 (2018-12-20) -- "Eggshell Igloo"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

In order to finish work in R environment we simply type (let us note, that parenthe-
ses are obligatory as q is function):

> q()

R reacts by question:

Save workspace image? [y/n/c]:

Answering our choice y for yes, or n for no we enclose the R environment. If we
select y, the whole working history is saved in the file .Rhistory saved in the working
directory. The last option c is for cancel, and we can continue in the R environment
without leaving it.
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1.1.2 Installing packages

R comes with a huge set of packages extending its base core. Packages include reusable
R functions, the documentation that describes how to use them, and sample data. They
increase the power of R by improving existing base R functionalities, or by adding new
ones.

To install package we use the function install.packages(). Entering this com-
mand without any option shows the window including the list of feasible packages. Se-
lecting one of them will download and install it. If we know the name of the package
we plan to install, we can submit this name as argument of the function. For example,
package pwr contains functions for the power analysis. We can download and install it
by the console command:

1 > install.packages("pwr")

Of course, if we want to make the package accessible for all users it is necessary to
install them as root.

1.2 First steps, R as a calculator
We can characterise R as a case-sensitive, interpreted language. we can run it by com-
mands at the R command prompt > or we can run a scripts, that are a sets of commands
saved in the source file. At first, we turn our attention to the R console.

1.2.1 The R workspace and navigation
The R workspace is the current R environment, that includes any objects defined by user.
how we mentioned above, this workspace can be saved when leaving the R session and
is reloaded during the next R environment start. In this regime, we enter all command
interactively at the command prompt. scrolling through the commands history is enabled
by using the up and down arrow keys. This allows to submit a previous commands
without retyping it. We only select the desired and submit it repeatedly using the Enter
key.

An important part of work in any environment is communication with the operat-
ing system and navigation among the directories and files in the computer. The default
working directory is the directory where R was started. In this current working directory
R reads and saves files and results. The actual working directory we can fin using the
getwd() function.

1 > getwd()
2 [1] "/home/user/R_programming"

The current working directory can be changed using the setwd() function. It is
important that the required directory exists. In opposite case we obtain an error, how
illustrates following example.

1 > setwd("new")
2 Error in setwd("new") : cannot change working directory

In this situation we have to create the directory new at first. We apply the system()
function. This function has several arguments. The first one is command for inserting

10



the shell command that is put in quotation marks. Let us mention some of the other
arguments:

wait a logical argument indicates whether the R interpreter should wait for the com-
mand to finish, or run it asynchronously,

timeout a limit for the elapsed time running command in a separate process, integer
number of seconds,

input character vector is supplied, this is copied one string per line to a temporary file,
and the standard input of command is redirected to the file.

In our situation, when the subdirectory new does not exist, we create it at first and
then we set this subdirectory as the working one.

1 > system("mkdir␣new")
2 > setwd("new")
3 > getwd()
4 [1] "/home/user/R_programming/new"

1.2.2 Getting help
Like most Open Source projects as well includes extensive facilities for accessing docu-
mentation and searching for help. The built-in help system contains detailed references
and example for any function defined in an installed package. The general function for
getting help has a simple form help(), or shortly in the operator form ?.

Let us assume, we want to get help about the trigonometric function sin(). We
enter at the R console

1 > help(sin)

or

1 > ?sin

The answer we get in the unified standardised form:

• In the head we find the name of the function in the left and package:<name> in
the middle. In our case we can see Trig, as this help is common for all trigono-
metric functions and package:base what indicates the trigonometric functions
are contained in the R base.

• The next part of the answer is Description. Here is briefly described how the
function works.

• The concrete syntax of the function entering is introduced in the part Usage.
• Part Arguments brings more detailed description of the arguments of the function
and their data type.

• Documentation for some functions contains also part assigned as Details. This
part provides additional information about the feasible arguments values, compat-
ibility and similar.

• Part Value explains the values we get as an answer of the function.
• In References we see some bibliography concerned in the requested function.
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• Examples of using the function are presented in the enclosing part Examples. It is
useful especially when learning to work with the function. If we want to see only
the examples of the use, we can apply the function example() with the name of
teh function inserted in quotes.

We can use the function help() also to get some information about the additional
packages. To get help about any package, we enter the argument package of the help()
function that contains the name of the package in the quotes. Let us suppose, we need
for example help to the package survival including the tools for the survival analysis.
Then we enter our request in the form

1 > help(package="survival")

Some packages include also code demonstrations. Function demo() with given ar-
gument package set to the package name in quotes lists these demonstrations. For ex-
ample the demos of the package stats we get by command

1 > demo(package="stats")

The concrete demonstration of linear and generalised linear modelling we get run-
ning the demo() function with argument lm.glm that we found in output from previous
command

1 > demo(lm.glm)

It frequently happens, we need some general information to given theme. In such
case we use the function help.search(), whose argument is the string containing the
theme we are interested in. This function searches the given theme in all actually in-
stalled packages. To search information to the theme of survival analysis, we enter the
command:

1 > help.search("survival")

Let us note, that the function help.search() can be substituted by double question
marks. So we could equivalently search by command:

1 > ?? "survival"

Many packages include vignettes. These vignettes are discursive documents which
illustrate and explain facilities in the package. The function vignette() displays the
list of the vignettes in the package. For example the vignettes of the pwr package that is
developed for the power analysis we get by:

1 > vignette(package="pwr")
2 Vignettes in package 'pwr':
3
4 pwr-vignette Getting started with the pwr package
5 (source,html)

All introduced help function are summarised in the table 1.1

1.2.3 Functions for managing the workspace

Under theworkspacewemean the current Rworking environment. Theworkspace refers
to all the variables and functions (collectively called objects) that user creates during an

12



Table 1.1: The functions for getting help in the R environment

Function Action
help("fun") Help on function "fun"
?fun Help on function "fun"
help.search("string") Search the help system for instances of the string
??string Search the help system for instances of the string
demo(package="name") Lists demos in a particular package name
demo(demo_name) Runs the concrete demo demo_name from the demos list
example("fun") Examples of using the function fun
vignette() List of all available vignettes for currently installed packages
vignette("name") Display specific vignettes for topic name

R session, as well as any packages that are loaded. when enclosing the R session, one can
save an image of the actual workspace. This image is automatically reloaded on the next
R start.

When quitting R by q() command, we get the question like this:

1 > q()
2 Save workspace image? [y/n/c]:

Answering y, the workspace is saved in the file .RData in the current working
directory. All commands are archived in the additional file .Rhistory we have already
mentioned.

Often we need to manage the workspace. Sometimes we need to remind the names
of the variables or functions we have created. We can also need to reload the history
of commands from another file than .Rhistory and similar. The functions useful in
workspace managing are listed in table 1.2

Table 1.2: The functions for managing the R workspace.

Function Action
getwd() List the current working directory.
setwd("path") Setting the current working directory to path.
ls() List the objects in the current workspace.
rm(objects) Removes the given objects from the workspace.
history(value) Display last value commands, default value is 25.
savehistory("file") Save the command history in selected file.
loadhistory("file") Reload the command history from selected file.
save.image("file") Save the workspace to file.
load("file") Load a workspace into the current session from file.

13



1.2.4 R as calculator

We turn attention to the simplest use of R console, means use R as an calculator. Console
prompt enables interactively compute the operations and functions, as well as to create
and use objects. The R prompt starts with the sign > and how we have mentioned, the
commands run after pressing the key Enter .

So we can conduct simple calculations with numbers, for example:

1 > 5+3
2 [1] 8

The label [1] tell us, which component of the output we are looking at. This is
not very interesting at this moment, as our output has only one component. When the
command is completed, the output is followed by new prompt > telling us that it is ready
for the next command. If we don’t see new prompt, it may be because we entered an
incomplete command. Let us see on the next case:

1 > 5-
2 +

In this case R responds by + what means we have to type the rest of the command
and then press Enter . Alternatively we can press Esc in order to cancel the command
and go back to the prompt. So, the previous calculation can be completed as follows:

1 > 5-
2 + 3
3 [1] 2

List of the arithmetic operations is presenter in table 1.3. The following listing illus-
trates the use of some operations.

1 > 5*(-3)
2 [1] -15
3 > 23/7
4 [1] 3.285714
5 > 23%%7
6 [1] 2
7 > 23%/%7
8 [1] 3
9 > 2^10

10 [1] 1024

Table 1.3: List of the arithmetic operators.

Symbol Operation Symbol Operation
+ Addition. ^ Exponentiation.
- Subtraction. %% Modulus (Remainder from integer division).
* Multiplication. %/% Integer division.
/ Division.

Besides the arithmetic operations R brings a set of relational operators whose results
are logical values. Their list is presented in table 1.4 and their use we illustrate in the next
listing.
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1 > 5<3
2 [1] FALSE
3 > 10>=8
4 [1] TRUE
5 > 2*3==6
6 [1] TRUE

Table 1.4: List of the relational operators.

Symbol Operation Symbol Operation
< Less than > Greater than
<= Less than or equal to >= Greater than or equal to
== Equal to != Not equal to

If the calculation is composed from several arithmetic operators, they are evaluated
in the usual order. That means at first is computed exponentiation followed by division,
then multiplication and in the end subtraction and addition. certainly the operations
order can be changed using parentheses, how is common practice. We can see it in the
different results in the following example.

1 > 6^2-12/3+11
2 [1] 43
3 > (6^2-12)/3+11
4 [1] 19

In addition to the operators R has numerous built-in functions. These functions
enable performing a variety tasks. Many of them are specialised to performing deep
statistical analysis and we will deal with them in the later lessons. On this place, we in-
troduce only elementary mathematical functions and computing the elementary sample
characteristics.

In order to use any function, we type its name followed by parentheses. Some func-
tions require submitting one or more arguments placed between the parentheses. As an
example of the function, that does not reqire any argument is the function date()which
gives the actual computer date and time.

1 > date()
2 [1] "Wed␣Mar␣␣3␣12:50:12␣2021"

As an example of function with one argument, we can introduce trigonometric func-
tion sin() that gives the value of sine of the given angle. Let us suppose, we want to
get the value of sin 30∘. As the sin() function requires the argument to be expressed
in the radians, we have to transform the angle to value 𝜋/6. Then we can compute the
function value. To illustrate it, we can compare two results (the second one is the result
we requested).

1 > sin(30)
2 [1] -0.9880316
3 > sin(pi/6)
4 [1] 0.5

Some functions can contain more arguments that are frequently voluntary and if not
submitted, the default values are used. As an example we can introduce the logarithmic
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function log(). Its obligatory argument is the number whose logarithm is to be eval-
uated and the voluntary argument is the base of the logarithm. The default base is the
Euler constant e, so the function provides the natural logarithm. Let us see the example.

1 > log(10)
2 [1] 2.302585
3 > log(10,base=10)
4 [1] 1

Another function with optional arguments is the functionround, that rounds its
argument to the nearest integer. Typing the optional argument digits we can state the
number of the decimal places.

1 > round(pi)
2 [1] 3
3 > round(pi,digits=3)
4 [1] 3.142

Let us note, that there is no obligatory order of the arguments, if we declare which
values belong to them. On the other hand, we canwrite the argumentswithout specifying
their purpose, if we save the suggested order. How we can see, the following commands
are equivalent.

1 > round(pi,3)
2 [1] 3.142
3 > round(digits=3,pi)
4 [1] 3.142

The list of the most frequently used mathematical functions we find in table 1.5.

Table 1.5: List of the most frequently used mathematical functions.

Function Purpose Function Purpose
exp() Exponential log() Logarithm (default natural)
log10() Logarithm with base 10 sqrt() Square root
sin() Sine asin() Arc sine
cos() Cosine acos() Arc cosine
tan() Tangent atan() Arc tangent
abs() Absolute value round() Rounding (default to integer)

1.2.5 Objects
R is object-oriented language. Also, everything in R is an object and it represents some
data that has been stored in memory. with given name. Objects can be given any name
but there are some rules that must be respected:

• the name consists only of lower or upper case letters, numbers, underscores and
dots,

• the name begins with upper or lower case letter,
• R is case sensitive (it means A and a are two different objects),
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• the name must nor be any of the R’s reserved words (the list of them is visible after
entering help(reserved)),

The objects in R can contain data of different type. Besides values or strings, it
can be any data type or structure like for example function or graph. R environment
does not require any data type specification when initialising a new object. We create
a new object simply with the assignment operator in the form of left arrow (<-). The
arrow points to the object name and on its second side is the value we want to assign
to the object. throughout the right arrow works in the same manner as left arrow, it is
recommended to avoid using the right arrows, to keep the clarity of the code.

We can create the object height_cm and then print its value:

1 > height_cm<-185
2 > height_cm
3 [1] 185

We can equivalently create a new object also using the sign “to be equal” (=). But
here are situations when this kind of assignment does not work. One of such cases is
using the equality sign as an argument of the function. We see it in the following example.

1 > log(x=25,base=5)
2 [1] 2
3 > x
4 Error: object 'x' not found
5 > log(x<-25,base=5)
6 [1] 2
7 > x
8 [1] 25

In the first case, we only submitted the argument for the logarithmic function x=25,
while in the second case we have at the same time created the object x. There is also third
possibility how to create a new object. We can use the function assign(). The name
of the object is to be put in the quotation marks and its value is given by the second
argument of the function. However, this method is seldom used to create new objects.

1 > assign("y",100)
2 > y
3 [1] 100

Once we created the object, we can use its name for any calculations. For example
we can recalculate the height given in cm into inches as follows.

1 > height_cm/2.54
2 [1] 72.83465

When creating a new object, it is important to keep in mind, that if we choose an
object name that is already in use, we overwrite the old value without any warning. Let
us note, that in addition to the reserved words, here are also some predefined constants
in the R environment. One of such constants is for example the Ludolf number assigned
as pi. This name of a new object is enabled, but it is dangerous to use it, because it
overwrites its predefined value. This can later lead to hardly identifiable errors in calcu-
lations.

Sometimes we need to assign the same value into more objects. We can use the
shorten syntax in such situation.
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1 x<-y<-z<-50

The list of all created object we obtain as an answer of the ls() function. The names
are printed as strings enclosed in the quotation marks.

1 > ls()
2 [1] "height_cm" "x" "y" "z"

The objects we will not use in the future can be removed from the memory using
the rm() function. The arguments of the rm() functions are the names of the objects
without the quotations. For example:

1 > rm(x,z)
2 > ls()
3 [1] "height_cm" "y"

To remove all defined objects, we can use the combination of both functions ls() and
rm().

1 > rm(list=ls())
2 > ls()
3 character(0)
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Chapter 2 19

Data structures in R

Creating a suitable dataset plays crucial role in the statistical analysis. Datasets are usu-
ally rectangular tables of data, whose columns contains the variables and rows represent
the observations. For the successful statistical analysis, it is important to keep the infor-
mation in structure and format that meet our needs. In the current chapter we describe
the elementary data types and how they can be joined in simple or more complex data
structures.

2.1 Data types
The simplest objects in R environment are the vectors1. Each vectors is an one-
dimensional array and it holds several data values, all of the same type. The possible
data types are:

• numeric,
• integer,
• complex,
• logical,
• character.

2.1.1 Data type numeric
The data type numeric represents the real decimal numbers and it is the default type of
each new object. If we assign to any variable the decimal value, it is of the numeric type.
The type of the object we get by function class(). Let us see the example.

1 > x<-12.35
2 > class(x)
3 [1] "numeric"

Let’s notice that inserting a whole number in the variable does not change its type,
but it remains numeric.

1 > z<-100
2 > class(z)
3 [1] "numeric"

In order to insert the vectors of the length greater than one, we use the combine
function c().

1Let us note, that simple variable is in R implemented as a vector of the length one.



1 > v<-c(2,4,6,8,10,12)
2 > class(v)
3 [1] "numeric"
4 > v
5 [1] 2 4 6 8 10 12

The single components of the vector are then accessed using indices in brackets.
How illustrates the following example, we cen select one or more components.

1 > v[2]
2 [1] 4
3 > v[c(1,3,5)]
4 [1] 2 6 10

Using the colon operator we can create a sequences of consecutive numbers. This
construction can be also used to submit the indices of the vector components. Let us see
the example:

1 > 2:10
2 [1] 2 3 4 5 6 7 8 9 10
3 > v[2:4]
4 [1] 4 6 8

If we apply the colon operator with the non-whole numbers, the vector starts with
the first submitted value and its adjacent components differ by one. If the final element
specified does not belong to the sequence then it is discarded. See the following code.

1 > v1<-6.6:12.8
2 > v1
3 [1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6
4 > v2<-3.54:8.95
5 > v2
6 [1] 3.54 4.54 5.54 6.54 7.54 8.54

Some programming languages accept also using the negative integers in the colon
operator. The R language admits the minus sign only with zero as the second operator.
The components are then printed in reverse order. See the code and its output.

1 > v[5:-0]
2 [1] 10 8 6 4 2

Finally, to create a vector containing sequence with user defined increment, we have
to use the function seq(). Let us suppose, wewant to create the sequence from 4 to 8with
increment of 0.4. Again, if the length of the interval does not match with whole multiple
of the increment, the sequence ends with the nearest integer, less than the upper bound.
We illustrate it in the following code.

1 > v<-seq(4,8,by=0.4)
2 > v
3 [1] 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0
4 > v<-seq(4,8,by=0.7)
5 > v
6 [1] 4.0 4.7 5.4 6.1 6.8 7.5
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2.1.2 Data type integer
The data type integer represents, as usually, the variables including the whole numbers.
However, it is important to remind, that implicit data type is numeric. Therefore, if we
submit whole number value, the resulting object is not automatically integer. We can see
it in the code:

1 > n<-10
2 > class(n)
3 [1] "numeric"

If we want to create the object of the integer type, we must submit the value
using the as.integer() function. Alternatively, the variables of the integer type can
be submitted as whole numbers ended by letter L. So in the previous case, the code that
creates integer object n has to be modified:

1 > n<-as.integer(10)
2 > class(n)
3 [1] "integer"
4 > n<-10L
5 > class(n)
6 [1] "integer"

The mentioned function as.integer() can be used also to get the value of a vector
in the required data type. If the content of the has any decimal part, it is discarded and
only integer part is printed. Let us see the example.

1 > v
2 [1] 4.0 4.7 5.4 6.1 6.8 7.5
3 > as.integer(v)
4 [1] 4 4 5 6 6 7

How it follows from the previous illustration, the argument of the as.integer()
function must not be necessary the whole number. It can be any numeric or logical value.
The decimal part of the numeric value is discarded and the logical value are transformed
to 0 (FALSE) or 1 (TRUE). Only character strings are non-permissible and NA is answered
instead. The next code shows possible responses of of the as.integer() function.

1 > as.integer(2.718)
2 [1] 2
3 > as.integer(TRUE)
4 [1] 1
5 > as.integer(FALSE)
6 [1] 0
7 > as.integer("abc")
8 [1] NA
9 Warning message:

10 NAs introduced by coercion

However, when making any computations, it is important to keep in mind that a
variable may be retyped. Moreover, this change of the variable type occurs without any
warning. Let us see the following example.

1 > x<-as.integer(20)
2 > class(x)
3 [1] "integer"
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4 > x<-x/3+1
5 > x
6 [1] 7.666667
7 > class(x)
8 [1] "numeric"

2.1.3 Data type complex
The R environment provides also the possibility to work with complex numbers. The
complex value is in R defined via the imaginary unit i. The following code illustrates,
how to create the complex variable.

1 > z<--3+8i
2 > z
3 [1] -3+8i
4 > class(z)
5 [1] "complex"

In mathematics, the complex numbers are closely related to taking the square roots
from the negative numbers. As the imaginary unit is defined by the relation 𝑖2 = −1, it is
frequently interpreted as √−1. But in the R computations we have to keep in mind, that
value −1 is not of the complex type and therefore we do not get the result in the form of
the complex number but NaN instead.

1 > sqrt(-1)
2 [1] NaN
3 Warning message:
4 In sqrt(-1) : NaNs produced

In order to receive the result as the complex number, we must enter the value as
the complex type. To do so, here are two alternatives. One of them is to enter −1 as the
complex number with zero imaginary part and the second alternative is to use definition
of the variable type by the function with as prefix. Both alternatives are presented in the
following code.

1 > sqrt(-1+0i)
2 [1] 0+1i
3 > sqrt(as.complex(-1))
4 [1] 0+1i

Let us note that sqrt() and as.complex() functions has to be entered in the given
order. If we enter them in the reverse order, the code does not work correctly, how shows
the example.

1 > as.complex(sqrt(-1))
2 [1] NaN+0i
3 Warning message:
4 In sqrt(-1) : NaNs produced

When entering the complex number with unit imaginary part, it is necessary to
write the coefficient 1. In opposite the imaginary unit is understood as object with name
i and R answers by warning about non existing object. We can observe it in the following
code excerpt.
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1 > a<-1+i
2 Error: object 'i' not found
3 > a<-1+1i
4 > a
5 [1] 1+1i

2.1.4 Data type logical
Data type logical can have two logical values TRUE or FALSE. It is frequently created
via comparison between variables.

1 > x<-10;y<-20
2 > z<-x<y
3 > z
4 [1] TRUE
5 > class(z)
6 [1] "logical"

Here are defined all standard logical operations, how listed in table 2.1. Their using
is illustrated by the following code.

1 > a<-TRUE;b<-FALSE
2 > a&b
3 [1] FALSE
4 > a|b
5 [1] TRUE
6 > !a;!b
7 [1] FALSE
8 [1] TRUE

Table 2.1: List of the standard logical operations.

Operation Purpose Operation Purpose
& Logical AND | Logical OR
! Negation

How we have already mention, the logical values can be transformed to the integer
or numeric value using the functions as.integer() or as.numeric() respectively. The
logical value TRUE is in both functions interpreted as number 1 and the logical value
FALSE is transformed to 0. Similarly, any numeric value can be transformed to logical
using the function as.logical(). Any non-zero value of its argument is transformed
to logical value TRUE and only 0 is interpreted as FALSE. See the example.

1 > as.logical(1)
2 [1] TRUE
3 > as.logical(2)
4 [1] TRUE
5 > as.logical(0.5)
6 [1] TRUE
7 > as.logical(0)
8 [1] FALSE
9 > as.logical(-1)

10 [1] TRUE
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2.1.5 Data type character
The objects of the type character are used to store the string values. This type can
contain any alphanumeric characters. They are entered using the quotation marks or by
the function as.character(). The numbers are in this situation interpreted as strings,
so it is not allowed to make some calculations with them. We see it in the following
example, where the variable s is of the type character and therefore we get its value
with quotation marks.

1 > var<-"string"
2 > class(var)
3 [1] "character"
4 > s<-as.character(3.14)
5 > 2*s
6 Error in 2 * s : non-numeric argument to binary operator
7 > class(s)
8 [1] "character"
9 > s

10 [1] "3.14"

The character type objects can be concatenated using the paste() function.

1 > name<-"Donald"
2 > surname<-"Knuth"
3 > paste(name,surname)
4 [1] "Donald␣Knuth"

Sometimes it is required to change the default separation of the concatenated char-
acters by space. To do this, we use the additional argument sep of the paste() function.
In the previous case, we can use comma instead of space.

1 > paste(name,surname,sep=",")
2 [1] "Donald,Knuth"

Frequently it is more convenient to create a readable string with the sprintf()
function, which has a C language syntax. This function returns a character vector con-
taining a formatted combination of text and variable values. The string contains normal
characters, which are passed through to the output string, and also conversion speci-
fications which operate on the arguments. The allowed conversion specifications start
with a % and end with one of the formatting letters. The most frequently used letters are
summarised in table 2.2.

We illustrate the use of formatted output in the following examples.

1 > sprintf("%s␣has␣%i␣dogs","John",3)
2 [1] "John␣has␣3␣dogs"
3 > sprintf("Number␣pi␣equals␣%f",pi)
4 [1] "Number␣pi␣equals␣3.141593"
5 > sprintf("Number␣pi␣equals␣%0.12f",pi)
6 [1] "Number␣pi␣equals␣3.141592653590"
7 > sprintf("10!␣in␣exponential␣%e",factorial(10))
8 [1] "10!␣in␣exponential␣3.628800e+06"
9 sprintf("100␣in␣octal␣notation␣%o",100)

10 [1] "100␣in␣octal␣notation␣144"
11 > sprintf("1000␣in␣hexadecimal␣notation␣%X",1000)
12 [1] "1000␣in␣hexadecimal␣notation␣3E8"
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Table 2.2: List of the most frequently used variable output formatting letters of the
sprintf() function.

Letter Format
s Character string, NA values converted to ”NA”.
d,i Integer values.
o Integer in octal notation.
x,X Integer in hexadecimal notation using the same case for a-f as the code.
f Double precision value, in fixed point decimal notation. The number

of decimal places is specified by the precision, the default is 6.
e,E Double precision value, in exponential decimal notation, using the

same case for e as the code.

One of the typical string operations is extracting some substring. In R is imple-
mented the function substr(), whose arguments are the original string and the start
and end positions of the substring that should be extracted. Let us see the example.

1 z<-"We␣have␣an␣interesting␣lesson␣in␣R␣today"
2 > substr(z,start=12,stop=34)
3 [1] "interesting␣lesson␣in␣R"

In order to replace some part of the string by another substring, we apply the func-
tion sub(). It should be noticed, that it is important to pay attention to unambiguity
of the substring, because only the first occurrence is substituted. Sometimes it can lead
to undesirable result, how illustrate the following example. Let us suppose, we want to
replace “my sister” by “your sister” in the sentence: “Here is my brother and my sister”.
The first use of the sub() function shows the incorrect substitution due to unambiguity.
The correct solution brings the second case of using the sub() function.

1 > z<-"Here␣is␣my␣brother␣and␣my␣sister"
2 > sub("my","your",z)
3 [1] "Here␣is␣your␣brother␣and␣my␣sister"
4 > sub("my␣sister","your␣sister",z)
5 [1] "Here␣is␣my␣brother␣and␣your␣sister"

Besides the sub() function, there is implemented as well gsub() function. It differs
from sub() in that gsub() substitutes all matches respectively. We illustrate it in the
following code.

1 > gsub("my","your",z)
2 [1] "Here␣is␣your␣brother␣and␣your␣sister"

2.2 Data structures
In R ne finds a large variety of objects for storing data. They can have a form of single
scalars or variables, but can be also combined in some structures. In the R we can use the
following data structures:

• vector,
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• matrix,
• array,
• list,
• frame.

In this section we introduce briefly all the mentioned structures and methods of
working with them. The correct selection of the data structure is often essential for
successful data analysis.

2.2.1 Vector
Vector is the simplest data structure. It can be characterised as a sequence of data ele-
ments of the same basic type. The single values contained in the vector are called compo-
nents. How we mentioned in the subsection about numeric data type, as well the single
variable can be considered as a vector of the length one.

The number of components of the vector is referred as its length. This value we get
using the length() function. Let us note, that vector v is created by combine function,
we have introduced in the subsection 2.1.1.

1 > v<-c(1,3,5,7,9)
2 > length(v)
3 [1] 5

The combine functionc() does not only create the vectors, but it can be applied to
combine two or more vectors. It can happen, that combined vectors have not the same
data type. In such situations the types are converted to the type character. It is important
to note this, as this can lead to a loss of the ability to perform calculations on numerical
values. Let us see the examples.

1 > w<-c("a","b","cc")
2 > c(v,w)
3 [1] "1" "3" "5" "7" "9" "a" "b" "cc"

We can observe, that numerical values originally stored in the vector v are now trans-
formed to characters. On the other hand, if we create a logical vector u, its values are
converted to numeric values 0 or 1. But when combining with the vector och characters,
the logical values are transformed to the strings.

1 > u<-c(TRUE,FALSE,TRUE)
2 > c(u,v)
3 [1] 1 0 1 1 3 5 7 9
4 > c(u,w)
5 [1] "TRUE" "FALSE" "TRUE" "a" "b" "cc"

The vector arithmetic is implemented component-wise, means that arithmetic op-
erations are performed component-by-component. We can use the following arithmetic
operations:

+ addition of a number to all components or addition of vectors component-by-
component,

- subtracting of a number from all components or subtracting of vectors component-
by-component,
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* multiplication of all components by number or multiplication of vectors component
by component,

/ dividing all components by number or dividing of vectors component-by-component.

Let us see some examples of the vector arithmetic. Special attention pay to illustra-
tion, how does work the multiplication and dividing by a number and multiplication and
dividing of vectors.

1 > v<-c(1,3,5,7,9)
2 > u<-c(10,20,30,40,50)
3 > u+v
4 [1] 11 23 35 47 59
5 > u-v
6 [1] 9 17 25 33 41
7 > 5*v
8 [1] 5 15 25 35 45
9 > u*v

10 [1] 10 60 150 280 450
11 > u/5
12 [1] 2 4 6 8 10
13 > u/v
14 [1] 10.000000 6.666667 6.000000 5.714286 5.555556

The operation conducted between number and vector is generalised to operate with
vectors whose lengths does not match. The so called recycling rule is applied in such
situations. It means, that the operations is conducted component-wise, where the shorter
vector is used repeatedly. This rule is limited by the condition, that the length of the
longer vector must be a multiple of the length of the shorter one. We illustrate it in the
example, where the condition is fulfilled only in the first case while an error occurs in
the second case.

1 > v<-c(10,20,30)
2 > u<-1:9
3 > u+v
4 [1] 11 22 33 14 25 36 17 28 39
5 > u<-1:10
6 > u+v
7 [1] 11 22 33 14 25 36 17 28 39 20
8 Warning message:
9 In u+v:longer object length is not a multiple of shorter object

10 length

In the subsection 2.1.1 we have mentioned accessing the vector component by their
index. Let us remind the components are accessed using the numeric values enclosed in
brackets. As a novelty we can introduce, that the indices can be also repeated, like shows
the next code.

1 > u<-2*1:10
2 > u[c(2,3,5,5)]
3 [1] 4 6 10 10

Another alternative how to select some components of some vector is to use the
vector of logical values. This logical vector must have the same length as the original
vector. Its components are TRUE if the corresponding components in the original vector
are to be included in the slice, and FALSE if otherwise.
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1 > u<-2*1:6
2 > L<-c(FALSE,TRUE,TRUE,FALSE,FALSE,TRUE)
3 > u[L]
4 [1] 4 6 12

The R environment allows to assign names to the vector components. This is per-
formed using the names() function. for example we can create the character vector with
two components.

1 > v<-c("Donald","Knuth")
2 > v
3 [1] "Donald" "Knuth"

Now we assign names to the components of v.

1 > names(v)<-c("Name","Surname")
2 > v
3 Name Surname
4 "Donald" "Knuth"

Now we can retrieve the second component of the vector by its name.

1 > v["Surname"]
2 Surname
3 "Knuth"

2.2.2 Matrix
We can definematrix as a two dimensional collection of data of the same type arranged in
rectangular layout. We create the matrix object in memory with the matrix() function.
The matrix() function can contain more arguments:

vector contains the elements of the matrix,
nrow is an integer value, it specifies number of rows in the matrix,
ncol is an integer value, it specifies number of columns in the matrix,
byrow is a logical value, it indicates, if thematrix should be filled by rows (byrows=TRUE)

or by columns (byrows=FALSE), its default value is FALSE,
dimnames is a list of character vectors that contain optional row and columns labels.

Let us now create twomatrices, one of them by rows and the second one by columns.

1 > A<-matrix(3:8,nrow=3,ncol=2,byrow=TRUE)
2 > A
3 [,1] [,2]
4 [1,] 3 4
5 [2,] 5 6
6 [3,] 7 8
7 > B<-matrix(3:8,nrow=3,ncol=2,byrow=FALSE)
8 > B
9 [,1] [,2]

10 [1,] 3 6
11 [2,] 4 7
12 [3,] 5 8
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To the single elements of the matrix are accessed by pair of indices in brackets. The
first index corresponds to the row number and the second to the column number, how
it is commonly used in matrix algebra. So the element located in the second row and
second column of the matrix A is extracted by code:

1 > A[2,2]
2 [1] 6

Omitting one of the indices leads to extracting of the row or column from the matrix. Let
us see, how to extract first column of the matrix A and second row of the matrix B.

1 > A[,1]
2 [1] 3 5 7
3 > B[2,]
4 [1] 4 7

We can also extract submatrix that contains more than one rows or columns at a time.

1 > B[c(1,3),]
2 [,1] [,2]
3 [1,] 3 6
4 [2,] 5 8
5 > C<-matrix(1:12,nrow=3)
6 > C
7 [,1] [,2] [,3] [,4]
8 [1,] 1 4 7 10
9 [2,] 2 5 8 11

10 [3,] 3 6 9 12
11 > C[c(1,3),c(2,4)]
12 [,1] [,2]
13 [1,] 4 10
14 [2,] 6 12

Finally, let us show how to assign names to rows and columns of the matrix. Later,
we can call the elements of the matrix by the names.

1 > dimnames(A)<-list(c("row1","row2","row3"),
2 + c("col1","col2"))
3 > A
4 col1 col2
5 row1 3 4
6 row2 5 6
7 row3 7 8
8
9 > A["row2","col1"]

10 [1] 5

We construct the transpose of a matrix by interchanging its columns and rows with
the function t().

1 > t(B)
2 [,1] [,2] [,3]
3 [1,] 3 4 5
4 [2,] 6 7 8

We can also combine matrices. It is necessary, the matrices have the same number of
columns or the same number of rows. If they have the same number of rows, we can
combine the columns with the cbind() function. Let us note using of the diag() func-
tion that construct the diagonal matrix with given elements on the diagonal.
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1 > cbind(B,diag(c(1,2,5)))
2 [,1] [,2] [,3] [,4] [,5]
3 [1,] 3 6 1 0 0
4 [2,] 4 7 0 2 0
5 [3,] 5 8 0 0 5

Similarly, we can combine the rows of two matrices if they have the same number of
columns. In such situation we apply the function rbind(). Let us suppose, we want to
combine the matrix Cwith the second and the fourth row of the diagonal matrix that has
on its diagonal numbers 1, 2, 5 and 7. We use the following code.

1 > rbind(C,diag(c(1,2,5,7))[c(2,4),])
2 [,1] [,2] [,3] [,4]
3 [1,] 1 4 7 10
4 [2,] 2 5 8 11
5 [3,] 3 6 9 12
6 [4,] 0 2 0 0
7 [5,] 0 0 0 7

2.2.3 Array

Arrays are generalizations of the matrix data structure. One can characterise them as
more than two dimensional matrices. These data structures are created similarly like
matrices by following command:

1 name<-array(vector, dimensions,dimnames)

In the presented code name represents the name of the array being created, vector
contains data for the array2, dimensions is a numeric vector that defines the length
for each dimension and dimnames is a list of names how the dimensions are reported.
The last argument dimnames is optional and its use depends on the need of naming the
dimensions.

Now we illustrate creating of the 3 × 4 × 3 array. For greater clarity of the array, we
create at first the names of single dimensions.

1 > dim1<-c("A1","A2","A3")
2 > dim2<-c("B1","B2","B3","B4")
3 > dim3<-c("C1","C2","C3")

Now we are ready to create the array z, that contains the integers from 1 to 36. We
use following code

1 > z<-array(1:36,c(3,4,3), dimnames=list(dim1,dim2,dim3))

Let us now see the structure, how is the array stored in the memory:

1 > z
2 , , C1
3
4 B1 B2 B3 B4
5 A1 1 4 7 10
6 A2 2 5 8 11

2Let us remind, they must be of the same type.
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7 A3 3 6 9 12
8
9 , , C2

10
11 B1 B2 B3 B4
12 A1 13 16 19 22
13 A2 14 17 20 23
14 A3 15 18 21 24
15
16 , , C3
17
18 B1 B2 B3 B4
19 A1 25 28 31 34
20 A2 26 29 32 35
21 A3 27 30 33 36

We can observe, that arrays are saved in the form of multiple matrices. The single values
or subsets of the array are accessed similarly to matrices by indexing in the brackets [
and ]. In our example, we can access the first C1 matrix by command:

1 > z[,,"C1"]
2 B1 B2 B3 B4
3 A1 1 4 7 10
4 A2 2 5 8 11
5 A3 3 6 9 12

To extract for example value 8 from the array, we apply all three indices determining its
position. Let us note, the dimensions can be called by numbers or by names. As well the
combination of indices and names works correctly, how shows the example:

1 > z[2,3,1]
2 [1] 8
3 > z[2,3,"C1"]
4 [1] 8
5 > z["A2","B3",1]
6 [1] 8

Similarly like in matrices, the sub-arrays can be extracted by submitting a scope of the
indices. We illustrate it on subtracting the matrix, containing numbers 17, 18, 20, 21 from
the array z. Here is the code and result:

1 > z[2:3,2:3,2]
2 B2 B3
3 A2 17 20
4 A3 18 21

Alternatively, we can use the name of matrix C2:
1 > z[2:3,2:3,"C2"]
2 B2 B3
3 A2 17 20
4 A3 18 21

2.2.4 Frame

Data frame is the most common structure for storing the data. This structure is more
general than matrices or arrays as it enables storing the column vectors of the different
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data types. Data frames are created using the function data.frame() and its general
form is:

1 > name<-data.frame(col1,col2,col3, ...)

Here name is the user defined name of the new variable containing the data frame, and
col1, col2, col3 (or more) are the columns vectors of any type. The names of the each
single columns are provided by the names() function.

We make it clear by the following listing. Let us suppose, we want to create the
dataset for the analysis of the individual playing statistics of the basketball players. For
simplicity of the illustrative example, let us suppose, we register for each player only
a few data, like some playerID, position, and for scoring the number of shooting
attempts attempted and successful attempts as variable made. Then we create the data
frame players:

1 > playerID<-c(1,2,3,4)
2 > position<-c("forward","guard","forward","center")
3 > attempted<-c(12,6,10,15)
4 > made<-c(7,4,6,12)
5 > players<-data.frame(playerID,position,attempted,made)
6 > players
7 playerID position attempted made
8 1 1 forward 12 7
9 2 2 guard 6 4

10 3 3 forward 10 6
11 4 4 center 15 12

In the top line, named the header, we see the names of the columns. Each subsequent
row is the data row. Its first value is the row name (ordinal number if no row names are
submitted) and it is followed by the actual data. Each individual data member of a row is
called a cell.

There are several ways how to access the each cell of the data frame. One of them
is to use the index notation similarly how we did it with matrices and arrays. We can
demonstrate this approach with the players data frame created earlier.

1 > players[1:2]
2 playerID position
3 1 1 forward
4 2 2 guard
5 3 3 forward
6 4 4 center

Another option is to use the column names (given as character vector) instead of indices:

1 > players[c("playerID","attempted","made")]
2 playerID attempted made
3 1 1 12 7
4 2 2 6 4
5 3 3 10 6
6 4 4 15 12

The third possibility is to use the $ notation. This notation consists from the data
frame name on the first place and column name on the second place, that are separated
by the $ sign. We can select for example all player positions from the data frame players
by following request:
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1 > players$position
2 [1] forward guard forward center
3 Levels: center forward guard

We get the answer in the form of the character vector. In the second line we obtain
information about all levels of the positions recorded in the frame. It can bring some
discomfort if we have to write the name of the data frame very frequently. Therefore
there are the functions attach() and detach(), that makes using of the concrete data
frame easier.

In order to access the single column we apply the he double square bracket [[]]
operator. For example to get the fourth column of our players data frame we will write
players[[4]]. Let us compare the results when using simple and double brackets op-
erators.

1 > players[4]
2 made
3 1 7
4 2 4
5 3 6
6 4 12
7 > players[[4]]
8 [1] 7 4 6 12

How we see, the results differ in their types. In the first case we get the result as new
data frame, while the second alternative gives a vector as its result. This difference in the
resulting structures is crucial for further computations. The double brackets operator is
equivalent to use of coma in the one bracket operator, how shows the following listing
(the column is called by index or by its name).

1 > players[,4]
2 [1] 7 4 6 12
3 > players[,"made"]
4 [1] 7 4 6 12

Similarly we can slice also rows from the data frame. In order to call rows by its name,
let as at first to assign some names to our object players:

1 > row.names(players)<-c("Player1","Player2","Player3","Player4")
2 > players
3 playerID position attempted made
4 Player1 1 forward 12 7
5 Player2 2 guard 6 4
6 Player3 3 forward 10 6
7 Player4 4 center 15 12

If we need to slice for example the third row, we can do it by index od name of the row,
using the single bracket operator with the extra comma in the square bracket operator.

1 > players[3,]
2 playerID position attempted made
3 Player3 3 forward 10 6
4 > players["Player3",]
5 playerID position attempted made
6 Player3 3 forward 10 6

To extract more than one rows, we use a numeric index vector.
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1 > players[c(1,3),]
2 playerID position attempted made
3 Player1 1 forward 12 7
4 Player3 3 forward 10 6
5 > players[2:4,]
6 playerID position attempted made
7 Player2 2 guard 6 4
8 Player3 3 forward 10 6
9 Player4 4 center 15 12

The attach() function adds the data frame to the search path of the R environment.
It enables to write only the column names. Let us see the demonstration.

1 > attach(players)
2 The following objects are masked _by_ .GlobalEnv:
3
4 attempted, made, playerID, position
5
6 > 100*made/attempted
7 [1] 58.33333 66.66667 60.00000 80.00000

After attaching the data frame players, we can easily compute the shooting per-
centages of each player, without writing the full name in the $ notation. To remove the
frame from the search path, we simply use the detach() function, how illustrates the
listing.

1 > detach(players)

Alternative to the attaching the frame to the search path is using the with() func-
tion. Our previous example can be then rewritten as:

1 > with(players, {
2 + 100*made/attempted}
3 + )
4 [1] 58.33333 66.66667 60.00000 80.00000

Statements within the braces {} are evaluated with reference to the data frame name
submitted as the first variable of the with() function. The limitation of the with()
function is, that objects created in its body will exist only within this function. If we
need to create an object that will exist also outside of the with(), we have to create it
using <<- instead of the common assignment by <-. We demonstrate it in the following
listing.

1 > with(players, {
2 + percent_local<-100*made/attemted
3 + percent_global<<-100*made/attemted}
4 + )
5 > percent_local
6 Error: object 'percent_local' not found
7 > percent_global
8 [1] 58.33333 66.66667 60.00000 80.00000

We often need to merge date from two or more datasets. For these purposes are in
R environment implemented two functions. In order to join merge data frames horizon-
tally, we use function merge(). Its arguments are two data frames that should be merged
and the third argument by="column name" defines the key variable for joining the data.
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It is clear, that this column name must be given in both merged frames. To demonstrate
the merging, let us at first create second data frame, that include the statistics about of-
fensive and defensive rebounds of the players. Then we merge these two data frames
players and rebounds into the new frame new_players. The key variable for joining
the data is the playerID. How we can see in the result, the new data frame does not
save the row names, throughout we have assigned the same names in both merged data
frames. We have to keep in mind this fact, because it can lead to errors when calling the
rows of the new frame by their names.

1 > offensive<-c(5,2,3,10)
2 > defensive<-c(6,3,8,12)
3 > rebounds<-data.frame(playerID,defensive,offensive)
4 > row.names(rebounds)<-c("Player1","Player2","Player3","Player4")
5 > new_players<-merge(players,rebounds,by="playerID")
6 > new_players
7 playerID position attempted made defensive offensive
8 1 1 forward 12 7 6 5
9 2 2 guard 6 4 3 2

10 3 3 forward 10 6 8 3
11 4 4 center 15 12 12 10

The second alternative of merging data frames is adding a new rows to the existing data
frame. To add a new row we use the function rbind(). Arguments of this function are
two data frames. They must have the same variables, but these variables do not have to
be in the same order. If the first data frame has variables that the second data frame does
not, then either:

1. Delete the extra variables in the first data frame or
2. Create the additional variables in the second data frame and set them to NA (missing

values).

To demonstrate the rbind() function, we create at first the new data frame players2
that contains a few additional players data. Then we merge both frames in a new object
assigned as more_players. Let us see the listing.

1 > position<-c("center","guard","forward")
2 > attempted<-c(14,8,12)
3 > made<-c(10,5,8)
4 > players2<-data.frame(playerID,made,attempted,position)
5 > row.names(players2)<-c("Player5","Player6","Player7")
6 > more_players<-rbind(players,players2)
7 > more_players
8 playerID position attempted made
9 Player1 1 forward 12 7

10 Player2 2 guard 6 4
11 Player3 3 forward 10 6
12 Player4 4 center 15 12
13 Player5 5 center 14 10
14 Player6 6 guard 8 5
15 Player7 7 forward 12 8

How we can see, the row names are saved in this vertical data merging. The data frame
players2 was created with different columns order, to illustrate that joining is inde-
pendent on it. On the other hand, the order of submitting the variables in the rbind()
function is substantial. How shows the following listing, submitting them in reversal
order leads to different result:
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1 > rbind(players2,players)
2 playerID made attempted position
3 Player5 5 10 14 center
4 Player6 6 5 8 guard
5 Player7 7 8 12 forward
6 Player1 1 7 12 forward
7 Player2 2 4 6 guard
8 Player3 3 6 10 forward
9 Player4 4 12 15 center

2.2.5 List
Lists represent the most complex data structure. In general we can say, that lists are
ordered collections of objects. They enable to gather more objects, reported as its compo-
nents under one name. List can be a combinations of all another data structures: vectors,
matrices, data frames and even other lists. To create a list, we use the function list().
Its syntax is simple:

\list(object1,object2,...)

Its arguments are names of existing objects. Optionally we can name the object in the
created list:

\list(name1=object1,name2=object2,...)

We will demonstrate creating the list named NBA from our existing data frames players
and players2. Moreover, in the list we join the player statistics with some clubs. At
first we create the list containing one club:

1 > NBA<-list(club="Bulls",city="Chicago",Players=players)
2 > NBA
3 $club
4 [1] "Bulls"
5
6 $city
7 [1] "Chicago"
8
9 $Players

10 playerID position attempted made
11 Player1 1 forward 12 7
12 Player2 2 guard 6 4
13 Player3 3 forward 10 6
14 Player4 4 center 15 12

Later we can add a next member of the list using the concatenate function c(), how
demonstrates the listing.

1 > NBA<-c(NBA,list(club="Celtics",city="Boston",Players=players2))
2 > NBA
3 $club
4 [1] "Bulls"
5
6 $city
7 [1] "Chicago"
8
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9 $Players
10 playerID position attempted made
11 Player1 1 forward 12 7
12 Player2 2 guard 6 4
13 Player3 3 forward 10 6
14 Player4 4 center 15 12
15
16 $club
17 [1] "Celtics"
18
19 $city
20 [1] "Boston"
21
22 $Players
23 playerID made attempted position
24 Player5 5 10 14 center
25 Player6 6 5 8 guard
26 Player7 7 8 12 forward

Recall that this function concatenates all arguments into a single vector structure. In this
case it means, that the second club has got the positions from 4 to 6 in the new list, while
the element with double index [2,1] does not exist in the list.

1 > NBA[1]
2 $club
3 [1] "Bulls"
4
5 > NBA[4]
6 $club
7 [1] "Celtics"
8
9 > NBA[2,1]

10 Error in NBA[2, 1] : incorrect number of dimensions

When working with a list, we have to distinguish among the single and double brackets
operators. Applying the single bracket operator we get a slice of the list. As an example,
we can show the following listing and its output.

1 > NBA[3]
2 $Players
3 playerID position attempted made
4 Player1 1 forward 12 7
5 Player2 2 guard 6 4
6 Player3 3 forward 10 6
7 Player4 4 center 15 12

Using the double brackets operator gives the answer that seems to be the same at first
sight, however, they differ in the data structure. While the single bracket operator an-
swers a list structure, using the double brackets answers the same structure that has the
given component. This allows referring directly to its elements. All demonstrates the
following listing.

1 > NBA[[3]]
2 $Players
3 playerID position attempted made
4 Player1 1 forward 12 7
5 Player2 2 guard 6 4
6 Player3 3 forward 10 6
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7 Player4 4 center 15 12
8 > NBA[3][2]
9 $<NA>

10 NULL
11 > NBA[[3]][2,]
12 playerID position attempted made
13 Player2 2 guard 6 4
14 > class(NBA[3])
15 [1] "list"
16 > class(NBA[[3]])
17 [1] "data.frame"

The double brackets notation allows modifying a list members directly.

1 > NBA[[3]][2,]
2 playerID position attempted made
3 Player2 2 guard 6 4
4 > NBA[[3]][2,3]<-c(7)
5 > NBA[[3]][2,]
6 playerID position attempted made
7 Player2 2 guard 7 4

Once we have named the components of the list, we can refer to them by names instead
of indices. In order to access some member directly, we again use the double brackets
operator. In our previously constructed examples, the component Players has the data
frame structure, which means we can access its component again by indices or names.
We demonstrate a variety of modes of accessing the same member of the list.

1 playerID position attempted made
2 Player2 2 guard 7 4
3 > NBA[["Players"]][2,]$position
4 [1] guard
5 Levels: center forward guard
6 > NBA[["Players"]]["Player2",]$position
7 [1] guard
8 Levels: center forward guard
9 > NBA[[3]]["Player2",]$position

10 [1] guard
11 Levels: center forward guard
12 > NBA[[3]][2,]$position
13 [1] guard
14 Levels: center forward guard
15 > NBA[[3]][2,2]
16 [1] guard
17 Levels: center forward guard

Let us note here that in our list are two components named as Players. We see that
calling by name respects only its first occurrence in the list, so the second component
named Playerswe have to refer by its index. It is a warning for duplicate naming in the
list.

38



Figure 2.1: A built-in simple data editor on the linux platform

2.3 Data input and output

2.3.1 Entering data from the keyboard
Probably the simplest method of entering data is from the keyboard. To enter data from
keyboard we work in two steps:

1. Create the empty data frame with the variable names and types we want to store in
the dataset. This step can be omitted if we want to modify an existing data frame.

2. Invoke the simple data editor using the function edit(), whose argument is the
name of the data frame we want to edit. This approach can be used to add some
data from the keyboard into the existing data frame. We see the result of invoking
the editor in figure 2.1.

As an example we create empty data frame named mydatawith four variables: name
that has type character and three numeric variables age, height and weight. Let us note,
that assigning like numeric(0) and character(0) create a variable of the given type
but without any data.

1 > mydata<-data.frame(name=character(0),age=numeric(0),
2 + height=numeric(0),weight=numeric(0))
3 > mydata<-edit(mydata)

When quieting the editor, the entered data gathered in the mydata data frame.

2.3.2 Importing data from data files

The role of statistics is mass data processing. Therefore, manually entering data from the
keyboard is very inconvenient and not very practical. It is much more efficient to load
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data from existing data files. The R environment allows to import data from a variety of
file formats like csv fieles, text files, Excel files, ODBC database and many others. Most
of them requires installing specialized packages, therefore me shortly mention only a few
elementary methods.

Data in .csv files

One of the most commonly used data sample formats are the comma separated values,
usually stored in files with the csv extensions. Each cell inside such data file is separated
by a special character, which the most frequently is a comma, although other characters
can be used as well.

The first row of the data file should (but must not) contain the column names instead
of the actual data. Here is a sample of the expected format.

Column1,Column2,Column3
A,10,0.11
B,20,0.22
C,30,0.33

Let us suppose these data are saved in a file named mydata.csv3. We read the data using
the function read.csv().

1 > mydata<-read.csv("mydata.csv")
2 > class(mydata)
3 [1] "data.frame"
4 > mydata
5 Column1 Column2 Column3
6 1 A 10 0.11
7 2 B 20 0.22
8 3 C 30 0.33

We can observe the object mydata created using the read.csv() function has the data
frame structure.

The read.csv() function has several optional arguments. Here we mention some
of themost used. The complete list of themwe get using the help(read.csv) command.
In addition to the name of the input file (which is given in quotation marks), we can add
the following options:

• header which is a logical value that indicates whether the input file contains the
names of variables as the first line. Its default value is TRUE.

• sep defines the field separator character. The default value is comma, if sep = "",
the separator is “white space” (means one or more spaces, tabulators or newlines.

• dec defines the character used in the file for decimal points. Its default value is ..
In Central European countries, it is customary to use a comma instead of decimal
point. In such cases it is necessary to declare dec =",". In this context wemention
also read.csv2() function, which adopts using the comma for decimal numbers
and semicolon as delimiter.

• skip = n specify the number of lines to skip before the data starts. This option is
useful for data tables with blank rows or text padding at the top of files.

3For example simply by copy and paste in any text editor.
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• stringsAsFactorswhich is a logical value that indicates whether the strings are
converted to factors.To prevent character columns being converted to factors we
have to set it to FALSE.

• row.names a vector of row names. It can be a vector of actual row names or a
single number stating the column of the row names. If row.names is missing, the
rows are numbered.

Importing from the delimited text file

We can import data using the read.table() function. It works similarly like the
read.csv() function, means it reads the data from specified data file and creates a data
frame object. These two functions differ only in the default options settings. The two
arguments we need to be aware of are the field separator sep and the argument header
indicating whether the file contains the names of the variables as its first line. Here are
the differences:

• In the read.table() function the default separators are white spaces sep = ""
whereas in the read.csv() function the default separators are commas sep=",".

• In the read.table() is no header line suggested and the default value is
header=FALSE, while in the read.csv() function the default option is header=TRUE.

We can demonstrate it on the following example, where we read the same file by both
function. Compare the structure of the objects created and the object we got in the pre-
vious illustrative example.

1 > mydata <-read.table("mydata.csv")
2 > mydata
3 V1
4 1 Column1,Column2,Column3
5 2 A,10,0.11
6 3 B,20,0.22
7 4 C,30,0.33
8 > mydata <-read.table("mydata.csv",header=TRUE,sep=",")
9 > mydata

10 Column1 Column2 Column3
11 1 A 10 0.11
12 2 B 20 0.22
13 3 C 30 0.33

How we see, in the first case we get only one column, all variables are converted into
strings as the factor type. In the second case, when we declared existence of the header
line in the input file, only one columnwas created again. But it is named by concatenation
of all column names. Finally, in the third alternative, with full declaration of header and
sep options we got the same structure of mydata as we have applied the read.csv()
function.

Reading the Excel files

Perhaps the best way, how to import Excel files is to import it to a comma-separated
file from within Excel and then use the functions we described earlier. However, this
approach has some limitations. For example, if we work with more sheets in one docu-
ment, they must be exported separately, each sheet in an extra file. Fortunately, there are
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several packages that allow us to import data directly from Excel files. Let us mention
some of them:

• xlsx,
• XLconnect
• readxl

Excel 2007 and newer versions use an xlsx format. Therefore we introduce here
the xlsx package that is suitable to access spreadsheets in this format. Of course, it is
necessary to install this package before its first use. The xlsx package is a java based
solution and it is available for all three platforms: Windows, Mac, and Linux.

We install the package by standard command:

install.packages("xlsx")

To use it in actual workspace, we load it by the standard way:

load("xlsx")

This package provides two functions we can use for reading the contents of an Excel
worksheet into a R data.frame. These functions have similar names read.xlsx() and
read.xlsx2(). The difference between these two functions is:

• read.xlsx() preserves the data type, the type of the variable corresponds to each
column in the worksheet, but it is slow for large data sets (worksheet with more
than 100 000 cells).

• read.xlsx2() is faster on big files.

Both functions have similar syntax:

read.xlsx(file, sheetIndex, header=TRUE, colClasses=NA)
read.xlsx2(file, sheetIndex, header=TRUE, colClasses="character")

Their arguments have the following meaning:

• file is the name of the file containing the spreadsheet. If the files is not in the
working directory, it has to be declared with the full path.

• sheetIndex a number indicating the index of the sheet to read. We can replace it
by the sheetname argument given as character string with the sheet name.

• header logical value. If header=TRUE, the first row is used as the names of the
variables.

• colClasses a character vector that represents the class of each column.
• startRow, endRow numbers specifying the index of starting row and the last row
to read.

Reading the JSON files

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. JSON is a text
format that is completely language independent but uses conventions that are familiar to
programmers of the C-family of languages.
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To get JSON files into R, we first need to install or load the rjson package. Once
this is done, we can use the fromJSON() function. It usage depends if the json file is
stored in our computer or has to be downloaded from internet through URL. In the first
case we use the function in the form:

data<-fromJSON(file = "filename.json")

while in the second

data<-fromJSON(file = "URL to the json file")

In both cases, the object data is stored as the list. For the further analysis we can convert
the data using the as.data.frame() function.

2.3.3 Data output into the files

Writing into the .csv file

R can create csv file form existing data frame. To create the .csv file we use the
write.csv() function, or alternatively the write.csv2() function, that uses a comma
for the decimal point and a semicolon for the separator. The common syntax of the
function is:

write.csv(object,file="file_name",...options)

where object is obligatory argument containing the name of the data frame we want
to save and file_name is the name (or full path) of the file for writing that is obligatory
as well. Let us note, that setting file="" indicates output to the console. We introduce
some of the optional arguments (the full list we get by help(write.csv).

• append which is a logical value that indicates whether the output is appended to
exiting file. The default value is FALSE and any existing file of the given name is
destroyed.

• sep defines the field separator character. Values within each row of object are
separated by this character.

• dec the string to use for decimal points in numeric or complex columns, must be
a single character. The default value is decimal point.

• row.names a logical value indicating whether the row names of object are to be
written.

Writing data into the Excel files

Similarly like for reading, we need to load the xlsx package. It provides write.xlsx()
and write.xlsx2() functions that one can use to export data into the Excel workbook.
Note that the difference is the same as in the case of the functions for reading the spread-
sheets, means write.xlsx2() achieves better performance for very large data. The
simplified syntax for these functions is:
write.xlsx(x,file,sheetName="Sheet1",col.names=TRUE,row.names=TRUE,append=FALSE)
write.xlsx2(x,file,sheetName="Sheet1",col.names=TRUE,row.names=TRUE,append=FALSE)
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Their arguments have the following meaning:

• x a data.frame to be written into the workbook.
• file the path to the output file.
• sheetName the character string with the sheet name.
• col.names logical value, it indicates if the column names of x are to be written
along with x to the file.

• row.names logical value, it indicates if the row names of x are to be written along
with x to the file.

• append logical value, it indicates if x should be appended to an existing file, if
FALSE, it overwrites the existing file with the same path.

Writing data into the JSON files

Writing data to json data file has to be done in two phases. In the frist step we must
prepare the JSON object and in the second step we write it in the file.

To prepare the the JSON object we use the toJSON() function from the rjson pack-
age. Its general format is:

dataJSON<-toJSON(data)

Let us note, the object data we want to export in json format must be a list structure.
Once we have prepared the object dataJSON, we can save it using the write() function
in the form:

write(dataJSON, "filename.json")
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Chapter 3 45

Probability distributions in R

Being an environment specialized in the statistics, R enables workingwith a big variety of
the probability distributions. Each of the distribution that R handles has four functions.
All of them have the same principles of the name construction, that is composed from
the root name of the distribution and prefix which is one of the four letters:

• p for the cumulative distribution function,
• d for the density or probability function,
• q for the quantile function, the inverse to the cumulative distribution function,
• r random variable having the specified distribution (random values generator).

For example, the most commonly used normal distribution has root name norm an
the functions are then pnorm, dnorm, qdnorm, and rnorm. Similarly, for the binomial
distribution, these functions are pbinom, dbinom, qbinom, and rbinom. And so forth.

The most useful functions for working with the continuous random variables are
the “p” and “q” functions, because the density calculated by the “d” function can only be
used to calculate probabilities via integrals and R doesn’t integrate. on the other hand,
for discrete distributions the ”d” function has probabilistic meaning 𝑓 (𝑥) = 𝑃[𝑋 = 𝑥] and
hence it is useful in calculating probabilities.

3.1 Random samples
One of the most common process done by the analysts is taking samples of the data. R
offers the standard function sample() to take a sample from the datasets. Its simplified
syntax is:

sample(x, size, replace, prob)

where

• x is a vector or a data set the sample is drawn from,
• size is a sample size,
• replace is logical value, states if the values are repeated in the sample or not,
• prob a vector of probability weights.

The simplest use of the sample() function is with only one the first argument,
which gives randomized order of the x components, how illustrates the listing.

1 > sample(6)
2 [1] 4 3 5 1 6 2
3 > sample(4:10)
4 [1] 9 7 5 4 8 10 6
5 > sample(c(1,3,5,7,9))
6 [1] 9 5 7 3 1



Adding the second argument states the sample size. Sowe can for example randomly
select five integers between 1 an 40 by the command:

1 > sample(1:40,5)
2 [1] 30 35 34 5 29

Note that the default behaviour of the sample() function is to replace the values. It leads
to errors in the case, when the sample size exceeds the length of the data to be sampled.
Let us suppose, we want to simulate rolling the dice 50 times. If we use the the sample()
function in the default regime, we get the following error:

1 > sample(6,50)
2 Error in sample.int(x, size, replace, prob):
3 cannot take a sample larger than the population when 'replace=FALSE'

Therefore we have to explicitly set the logical value replace=TRUE, how illustrated
in the next listng.

1 > sample (6 ,50 , replace = TRUE )
2 [1] 6 5 3 3 5 5 4 6 3 1 3 2 ...
3 [39] 2 6 6 6 4 2 2 5 1 6 1 5

Finally, we can set the probabilities of all possible outcomes, that must not be nec-
essary same likely. For example, we can simulate tossing the unfair coin with higher
frequencies of heads than tails. Let us suppose, that heads fall twice more than tails.
Then we set the argument prob=c(2/3,1/3). Let us see the result in the following
listing (h means “head” and t means “tail”).

1 > sample (c("h","t"),20,replace = TRUE,prob=c(2/3,1/3))
2 [1] "h" "t" "h" "h" "h" "h" "t" "h" "h" "t"
3 [11] "h" "t" "h" "h" "t" "h" "h" "t" "t" "h"

We may easily experience, that if we take samples, they will be random and they
change each time we apply the sample() function. If we wish to avoid such changes, or
if we need to reconstruct the same sample, we can use the set.seed() function. Setting
a fix value in this function leads to producing the same sequence in each attempt. This
case is illustrated in the listing below.

1 > sample(6)
2 [1] 2 5 6 1 4 3
3 > sample(6)
4 [1] 1 2 3 5 4 6
5 > set.seed(3)
6 > sample(6)
7 [1] 2 5 6 1 4 3
8 > sample(6)
9 [1] 2 5 6 1 4 3

Here we have seen, that setting set.seed(3) before calling the sample() function
produces always the same sequence, whereas calling the sample() function without
it causes change in the result.
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3.2 Discrete distributions
Informally, we can characterize discrete random variables as random variables that can
have discrete values as outcomes. More formally, we say that the set of values of a dis-
crete random variable is at most countable. A discrete probability distribution is then
applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss,
a roll of a dice), and the probabilities are here encoded by a discrete list of the probabil-
ities of the outcomes, known as the probability mass function. If we assign as 𝐻 the set
of all possible values of the discrete random variable 𝑋 , we can introduce the probability
mass function 𝑝(𝑥) by formula

𝑝(𝑥) = ℙ (𝑋 = 𝑥) , 𝑥 ∈ 𝐻 . (3.1)

In the R environment we can use a variety of implemented discrete distributions. Let us
mention some of them:

• Bernoulli distribution,
• binomial distribution,
• geometric distribution,
• hypergeometric distribution,
• negative binomial distribution,
• Poisson distribution.

3.2.1 Bernoulli distribution
Bernoulli distribution is the simplest probability distribution. This is a distribution with
only two possible values. It can be interpreted as an indicator variable, if some random
event occurs or not. Formally, let𝐴 is a random event that occurs with probability ℙ (𝐴) =
𝑝 and the random variable 𝑋 = 1 if 𝐴 occurs and 𝑋 = 0 otherwise. Then the probability
mass function has the form

𝑝(𝑥) = 𝑝𝑥 (1 − 𝑝)1−𝑥 for 𝑥 = 0 or 1
This distribution is implemented in the R package Rlab as bern with parameter

prob. Reading the library Rlab and using the usual prefixes, we have at disposal four
functions:

• rbern(n,prob), where n is a number of observations and prob is a probability of
occurring the random event 𝐴 (success in the trial). It generates a vector of 0 and
1 selected from the Bernoulli distribution with given probability.

• pbern(q, prob, lower.tail = TRUE, log.p = FALSE)
• dbern(x, prob, log = FALSE)
• qbern(p, prob, lower.tail = TRUE, log.p = FALSE)

3.2.2 Binomial distribution

The binomial distribution is a discrete distribution that describes number of successes in
the series of trials wit two possible outcomes: success or failure. All its trials are inde-
pendent, the probability of success remains the same and the previous outcome does not
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affect the next outcome. The outcomes from different trials are independent. Binomial
distribution helps us to find the individual probabilities as well as cumulative probabilities
over a certain range.

Formally, let us assign 𝑝 the probability of success in one trial, 𝑛 the number of inde-
pendent trials and 𝑥 the number of successes in a sequence of 𝑛 independent experiments.
The random variable X follows the binomial distribution, if its probability mass function
has the form:

ℙ (𝑋 = 𝑥) = (𝑛𝑥)𝑝
𝑥𝑞𝑛−𝑥 , 𝑥 = 0, 1, 2, … , 𝑛, (3.2)

where 𝑞 + 𝑝 = 1.
We have four functions for handling binomial distribution in R:

• rbinom(n,prob), where n is numbers of observations, p is the probability of suc-
cess. This function generates 𝑛 random variables of a particular probability.

• pbinom(x, n, k), where n is total number of trials, p is probability of success, x
is the value at which the probability has to be found out. The function pbinom()
is used to find the cumulative probability of a data following binomial distribution
till a given value i.e. it finds 𝑃(𝑋 ≤ 𝑘).

• dbinom(x, n, p), where n is total number of trials, p is probability of success, x
is the value at which the probability has to be found out.This function is used to
find probability at a particular value for a data that follows binomial distribution
i.e. it finds 𝑃(𝑋 = 𝑘).

• qbinom(prob, n, p), where prob is the probability, n is the total number of
trials and p is the probability of success in one trial. This function is used to find
the 𝑛-th quantile, that is if 𝑃(𝑋 ≤ 𝑘) is given, it finds 𝑘.

Example 3.2.1 Suppose there are twenty multiple choice questions in a quiz. Each question
has five possible answers, and only one of them is correct. Find the probability of having six
or less correct answers if a student attempts to answer every question at random.

Solution: Since only one out of five possible answers is correct, the probability of an-
swering a question correctly by random is 1/5 = 0.2. We can find the probability of having
exactly 6 correct answers by random attempts using the dbinom() as follows

1 > dbinom(6,20,0.2)
2 [1] 0.1090997

To find the probability of having six or less correct answers by random attempts, we
apply the function dbinom() with 𝑥 = 0, … , 6. So we have:

1 > dbinom(0,20,0.2) + dbinom(1,20,0.2) + dbinom(2,20,0.2)+
2 + dbinom(3,20,0.2) + dbinom(4,20,0.2) + dbinom(5,20,0.2)+
3 + dbinom(6,20,0.2)
4 [1] 0.9133075

Alternatively, we can use the cumulative probability function for binomial distribution
pbinom(). So we get

1 > pbinom(6,20,0.2)
2 [1] 0.9133075
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Example 3.2.2 Let us now return to the example 3.2.1. Student pass the exam successfully,
if he answers more than 10 questions in the quiz correctly. What is the probability, that
student pass the exam if he answers the questions by random?

Solution: In this case we will apply the function pbinom() but with the option
lower.tail=FALSE. So we have

1 > pbinom(10,20,0.2,lower.tail=FALSE)
2 [1] 0.0005634137

Example 3.2.3 Let us assume we are in charge of quality for a factory. Wemake 250 widgets
per day. Defective widgets must be reworked. We know that there is a 2% error rate. Let us
simulate how many widgets we will need to fix each day this week.

Solution: To generate random sample from the binomial distribution with number
of trials 𝑛 = 250 and probability of success 𝑝 = 0.02, we use the rbinom() function. For
the one week sequence we choose the sample size equal to seven. So we get:

1 > rbinom(7,250,0.02)
2 [1] 2 5 3 9 5 9 5

Example 3.2.4 Let us assume we make a test of the drug that has a 80% success rate. Each
trial has 30 patients. How many patients is in the bottom 10% percent of positive outcome?
Let us state each decile in this treatment test.

Solution: Then 10% of trials will have between 0 and 21 patients respond positively
to this treatment. We state this using the function qbinom():

1 > qbinom(0.1,30,0.8)
2 [1] 21

Similarly, if we want the number of patients with a positive response in the bottom
20% of trials, we would enter

1 > qbinom(0.2,30,0.8)
2 [1] 22

In order to get each decile in this drug test we enter

1 > qbinom(seq(0.1,1,0.1),30,0.8)
2 [1] 21 22 23 24 24 25 25 26 27 30

3.2.3 Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes the
probability of 𝑥 successes in 𝑛 draws without replacement, from a finite population of
size 𝑁 that contains exactly 𝐾 objects with that feature. Each draw is either a success
or a failure but in contrast to binomial distribution, the probability of success does not
remain the same and the previous outcome affects the next outcome.

Let us denote as 𝑁 the population size, 𝐾 the number of success states in the pop-
ulation, 𝑛 the number of draws and 𝑥 the number of observed successes. The random
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variable 𝑋 follows the hypergeometric distribution, if its probability mass function has
the form

ℙ (𝑋 = 𝑥) =
(𝐾𝑥 )(

𝑁−𝐾
𝑛−𝑥 )

(𝑁𝑛 )
𝑥 = 0, 1, 2, … , 𝑛. (3.3)

In R, there are 4 built-in functions to generate the hypergeometric distribution:

• rhyper(N, m, n, k), generally refers to generating random numbers function
by specifying a seed and sample size,

• phyper(x, m, n, k), defines the cumulative distribution function of the hyper-
geometric distribution,

• dhyper(x, m, n, k), defines the probability mass function of the hypergeomet-
ric distribution,

• qhyper(N, m, n, k), is basically hypergeometric quantile function used to spec-
ify a sequence of probabilities between 0 and 1.

Here x represents the data set of values, m size of the population, n number of sam-
ples drawn, k number of items in the population, and N hypergeometrically distributed
values.

Example 3.2.5 A committee of 5 people is to be selected from 10 women and 8 men. What
is the probability that the committee will consist of 3 women and 2 men? What is the prob-
ability that in the committee will be a majority of women?

Solution: To state the probability, that there will be 3 women in the committee we
use the function dhyper(). By requirements 𝑥 = 3 women in the committee, 𝑚 = 10
total number of women in the group, 𝑛 = 8 the total number of men in the group and
𝑘 = 5 the number of the committee members. So we get

1 > dhyper(3,10,8,5)
2 [1] 0.3921569

Women can have the majority in the committee if there are 5, 4 or 3 women, or
alternatively if there are at most 2 men. Therefore we have two alternatives, how to
compute the probability. One approach is based on the dhyper() function when we get
the answer as a sum of its three values:

1 > dhyper(5,10,8,5)+dhyper(4,10,8,5)+dhyper(3,10,8,5)
2 [1] 0.6176471

Alternatively, we can compute this probability using the phyper() function with
arguments 𝑥 = 2 men in the committee, 𝑚 = 8 total number of men in the group, 𝑛 = 10
the total number of women in the group and 𝑘 = 5 the number of the committeemembers.
We get the same result:

1 > phyper(2,8,10,5)
2 [1] 0.6176471
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Example 3.2.6 Suppose a shipment of 100 DVD players is known to have ten defective play-
ers. An inspector randomly chooses 15 for inspection. Let us simulate how many defective
players will be selected in the sequence of 10 inspections.

Solution: The shipment contains 𝑚 = 10 defective DVD players and 𝑛 = 90 non-
defecive DVD players and inspector randomly selects 𝑘 = 15. When the inspection is
repeated 𝑁 = 10 times, to simulate their results we apply the function rhyper() with
given arguments. So we obtain:

1 > rhyper(10,10,90,15)
2 [1] 4 1 1 0 2 0 1 2 3 2

3.2.4 Negative binomial distribution

The negative binomial distribution is a discrete probability distribution that models the
number of successes in a sequence of independent and identically distributed Bernoulli
trials before a specified (non-random) number of failures (denoted 𝑛) occurs. If we further
denote 𝑥 the number of successes and the probability of the success as 𝑝, we can write
the probability mass function of the negative binomial distribution in the form:

ℙ (𝑋 = 𝑥) = (𝑛 + 𝑥 − 1
𝑛 − 1 )𝑝𝑥𝑞𝑛 , 𝑥 = 0, 1, 2, … (3.4)

where 𝑞 + 𝑝 = 1, 𝑝 > 0, 𝑞 > 0.
We have four built-in functions for handling negative binomial distribution in R:

• rnbinom(N,n,prob), where n is numbers of trials, N is the sample size, prob is the
probability of success. This function generates 𝑁 random variables of a particular
probability.

• pnbinom(x, n, p), is used to compute the value of negative binomial cumulative
distribution function. Here x is number of failures prior to the n-th success, and p
is probability of success.

• dnbinom(x, n, p), is the probability of x failures prior to the n-th success (note
the difference) when the probability of success is p.

• qnbinom(x, n, p), is used to compute the value of negative binomial quantile
function. Here x is the vector of quantile levels, n is the total number of trials and
p is the probability of success in one trial.

Example 3.2.7 An oil company conducts a geological study that indicates that an ex-
ploratory oil well should have a 20% chance of striking oil. What is the probability that
the first strike comes on the third well drilled? What is the probability that the third strike
comes on the seventh well drilled?

Solution: To find the requested probability, we need to find ℙ (𝑋 = 2) by for-
mula (3.4) with 𝑛 = 14. Note that is technically a geometric random variable, since we
are only looking for one success. Since a geometric random variable is just a special case
of a negative binomial random variable, we’ll try finding the probability using the neg-
ative binomial probability mass function. Due to the implementation of the dnbinom()
function, we set x=2 failures prior n=1 success and p=0.2. So we obtain the result
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1 > dnbinom(2,1,0.2)
2 [1] 0.128

To answer the second question we choose x=4 failures prior n=3 successes. Then we
obtain

1 > dnbinom(4,3,0.2)
2 [1] 0.049152

3.2.5 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the proba-
bility of a given number of events occurring in a fixed interval of time or space if these
events occur with a known constant mean rate and independently of the time since the
last event. If random variable 𝑋 follows the Poisson distribution with parameter 𝜆 > 0
(the average number of events), its probability mass function has the form

ℙ (𝑋 = 𝑥) = e−𝜆𝜆𝑥
𝑥! , 𝑥 = 0, 1, 2, … (3.5)

There are four Poisson functions available in R:

• dpois(x,l) calculates the probability mass function value ℙ (𝑋 = 𝑥) of the Pois-
son distribution with the parameter 𝜆 implemented as argument l.

• ppois(x,l) calculates the cumulative distribution function of a random variable
that follows the Poisson distribution. It returns the probability, that the variable
value is less or equal to x, the argument l is the parameter of the distribution. Stat-
ing the additional argument lower.tail=FALSE the right tail of the distribution
is considered, means we get the probability ℙ (𝑋 > 𝑥).

• rpois(k,l) is used for generating random numbers from a given Poisson distri-
bution. Here k is number of random numbers needed and l is the parameter of the
distribution.

• qpois(q,l) is used for generating quantile of a given Poisson’s distribution. Here
q is a vector of the quantile levels required and l is the parameter of the distribution.

Example 3.2.8 On a particular river, overflow floods occur once every 100 years on average.
Calculate the probability of 𝑘 = 0, 1, 2, 3, 4, 5, or 6 overflow floods in a 100-year interval.

Solution: As the overflow occurs once in 100 years, we can consider it to be a rare event
and suppose that the number of overflows follows the Poisson distribution. To find the
the requested probabilities, we use the ppois() function for x being a vector of integers
from 0 to 6 and parameter l equal to 1 overflow in 100 years. Then we enter the following
code:

1 > x<-seq(0:6)
2 > dpois(x,1)
3 [1] 3.678794e-01 1.839397e-01 6.131324e-02 1.532831e-02 3.065662e-03
4 [6] 5.109437e-04 7.299195e-05
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Example 3.2.9 A life insurance salesman sells on the average 3 life insurance policies per
week. Let us calculate the probability that in a given week he will sell some policies.

Solution: “Some policies” means “1 or more policies” and therefore we have to calculate
the probability ℙ (𝑋 > 0) = 1 − ℙ (𝑋 ≤ 0). We will apply the function ppois() with the
additional argument lower.tail set to FALSE. The parameter of the distribution is l=3
policies sold in one week. So we obtain

1 > ppois(0,3,lower.tail=FALSE)
2 [1] 0.9502129

Alternatively we can compute the probability using the dpois() function as:

1 > 1-dpois(0,3)
2 [1] 0.9502129

Example 3.2.10 A company produces 300 electric motors daily. The probability an electric
motor is defective is 0.01. Let us generate the number of defective motors made daily during
one working week.

Solution: The average number of defectives in daily production of 300 motors is 𝜆 =
0.01 × 300 = 3. To generate the daily number of defectives we use the rpois() function
with arguments k=5 working days and l=3. So we get

1 > rpois(5,3)
2 [1] 3 3 4 2 2

Example 3.2.11 Consider a computer system with Poisson job-arrival stream at an average
of 2 perminute. What is themaximum jobs that should arrive oneminute with 90% certainty.

Solution: To find a maximum arrivals with at least 90% certainty means to find the 90%
quantile. We can apply the qpois() function with arguments q=0.9 and l=2 average
arrivals per minute. So we have

1 > qpois(0.9,2)
2 [1] 4

So, here is at least 90% chance, that the number of arrivals does not exceed 4 per minute.

3.3 Continuous distributions
We can characterise the continuous distribution by words as a probability distribution
whose support is an uncountable set, such as an interval in the real line. They are
uniquely characterized by a cumulative distribution function that can be used to cal-
culate the probability for each subset of the support. The meaning of the cumulative
distribution function 𝐹(𝑥) is the probability 𝐹(𝑥) = ℙ (𝑋 ≤ 𝑥).

Besides the cumulative distribution function, the continuous random variable can
be described as well by the density function 𝑓 (𝑥). Its value has no probabilistic meaning,
but it is joined with the cumulative distribution function by the relation

𝐹(𝑥) = ∫
𝑥

−∞
𝑓 (𝑡) d𝑡.
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In the R environment are implemented many continuous distributions. In this short sur-
vey we will mention only some of them:

• uniform distribution,
• exponential distribution,
• normal distribution,
• Student 𝑡 distribution,
• Chi square distribution,
• Fisher F distribution.

Let us note, that last three distributions are joined with confidence intervals and the
statistical hypotheses testing. These distributions are implemented as they are needed in
the specialized functions for performing the test and we meet them in the later chapters.
Therefore we will concern here in some examples, that lead to the uniform, exponential
and normal distribution.

3.3.1 Uniform distribution

The continuous uniform distribution describes an experiment where there is an arbitrary
outcome that lies between certain bounds. More exactly, we say that random variable 𝑋
governs by the uniform distribution with parameters 𝑎 and 𝑏, 𝑎 < 𝑏, if its density function
has the form:

𝑓 (𝑥) = {
1
𝑏−𝑎 𝑥 ∈ ⟨𝑎; 𝑏⟩
0 elsewhere

(3.6)

In the R environment, here are implemented the functions:

• dunif() that gives the density function, its arguments are vector x and parameters
min and max of the distribution,

• punif() that gives the cumulative distribution function, its arguments are vector
x and parameters min and max of the distribution,

• qunif() that gives the quantile function, its arguments are quantiles q and param-
eters min and max of the distribution,

• runif() that generates the random values of the variable, its arguments are size
of the sample n and parameters min and max of the distribution.

Example 3.3.1 Let us suppose trams leave the stop at regular 5 minute intervals. We calcu-
late what is the probability that the passenger will wait

a) more than 3 minutes or,
b) not more than 1.5 minutes,

if he comes to the stop in a random moment.

Solution: Due to the regularity of the departure times, the waiting time is the
random variable that governs by the uniform distribution with parameters 𝑎 = 0 and
𝑏 = 5. Therefore the probability that the passenger will wait more than 3 minutes
ℙ (𝑋 > 3) = 1 − 𝐹(3). Entering the code 1-punif(3,min=0,max=5) we get the answer,
that this probability equals 0.4:
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Histogram of runif(100, min = 0, max = 5)
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Histogram of runif(1000, min = 0, max = 5)
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Figure 3.1: Histograms of 10, 100 and 1 000 simulations of the tram departures to the
example 3.3.1. The number of simulations increases from top to bottom.

1 > 1-punif(3,min=0,max=5)
2 [1] 0.4

Similarly, the second question is about probability ℙ (𝑋 ≤ 1.5) = 𝐹(1.5). The requested
result we get as puinf(1.5,min=0,max=5), so the probability is 0.3.

1 > punif(1.5,min=0,max=5)
2 [1] 0.3

We can simulate the situation using the runif() function. Increasing the sample
size we can also illustrate, how increasing number of the random experiments leads to
better approximation of the distribution. The histograms of the samples of 10, 100 and
1 000 values are illustrated in figure 3.1. There we see, how with the increasing sample
size from top to bottom the histogram is more uniformly distributed.

The source code is.

1 par(mfrow = c(3, 1))
2 hist(runif(10,min=0,max=5))
3 hist(runif(100,min=0,max=5))
4 hist(runif(1000,min=0,max=5))

3.3.2 Exponential distribution
The exponential distribution is the probability distribution that describes the waiting
time between events in a Poisson point process, i.e., a process in which events occur con-
tinuously and independently at a constant average rate. The random variable 𝑋 governs
by the exponential distribution with parameter 𝜆 > 0, usually reported as the rate, if its
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density function has the form:

𝑓 (𝑥) = { 𝜆e−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0 (3.7)

When the parameter 𝜆 is interpreted as the rate, the mean waiting time is 1/𝜆. In the R
environment is the exponential distribution implemented with the following functions:

• dexp() that gives the density function, its arguments are vector x and parameter
rate of the distribution,

• pexp() that gives the cumulative distribution function, its arguments are vector x
and parameter rate of the distribution,

• qexp() that gives the quantile function, its arguments are quantiles q and param-
eter rate of the distribution,

• rexp() that generates the random values of the variable, its arguments are size of
the sample n and parameter rate of the distribution.

Example 3.3.2 Suppose the mean checkout time of a supermarket cashier is three minutes.
Find the probability of a customer checkout being completed by the cashier in:

a) less than two minutes,
b) more than five minutes.

Solution: As we know the mean completing time, the checkout processing rate
equals to its inverted value, one divided by the mean checkout completion time. Hence
the processing rate is 1/3 checkouts per minute. So the question a) is answered as the
probability ℙ (𝑋 < 2) that is computed using the pexp() and equals 0.4866.

1 > pexp(1/3,2)
2 [1] 0.4865829

Similarly, the question b| we answer by probability ℙ (𝑋 > 2) that we can compute in two
alternative approaches

1 > 1-pexp(1/3,5)
2 [1] 0.1888756
3 > pexp(1/3,5,lower.tail=FALSE)
4 [1] 0.1888756

Example 3.3.3 Malfunction in a particular type of electronic device are known to follow an
exponential distribution with a mean time of 30 months until the device malfunctions. Let
us find the probability that.

a) a randomly selected device will malfunction within the first year (12 months),
b) a randomly selected device will last more than 6 years (72 months).

Solution: Let us denote as 𝑋 the random variable that represents the time to the
malfunction of the device. In the case a) we need to answer the question, what is the
probability ℙ (𝑋 < 12) if the the random variable 𝑋 follows the exponential distribution
with parameter 𝜆 = 1/30. This probability equals 0.32968. In R we get the result by the
command:
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1 > pexp(1/30,12)
2 [1] 0.32968

In order to answer question b), we have to find the probability ℙ (𝑋 ≥ 70) that equals
0.0907. To get the answer using the pexp() function, we have to set the argument
lower.tail=FALSE, how shows the code below:

1 > pexp(1/30,72,lower.tail=FALSE)
2 [1] 0.09071795

To illustrate themeaning of the quantiles we find the the length of timewithinwhich
60 percent of devices will have malfunctioned. We use the qexp() function how shows
the following command:

1 > qexp(0.6,1/30)
2 [1] 27.48872

So 60 percent of devices will malfunction within approx. 27.5 months.

3.3.3 Normal distribution

A normal (or Gauss) distribution is a type of continuous probability distribution for a
real-valued random variable. The general form of its probability density function is

𝑓 (𝑥) = 1
𝜎√2𝜋 e−1/2(

𝑥−𝜇
𝜎 )

2
. (3.8)

The parameter 𝜇 is the mean the distribution (and also its median and mode), while
the parameter 𝜎 is its standard deviation.The normal distribution is important because
of the Central Limit Theorem, which states that the population of all possible samples of
size 𝑛 from a population with mean 𝜇 and variance 𝜎2 approaches a normal distribution
with mean 𝜇 and 𝜎2/𝑛 when 𝑛 approaches infinity.

In the R environment, here are implemented the functions:

• dnormf() that gives the density function, its arguments are vector x and parame-
ters mean and sd of the distribution,

• pnorm() that gives the cumulative distribution function, its arguments are vector
x and parameters mean and sd of the distribution,

• qnorm() that gives the quantile function, its arguments are quantiles q and param-
eters mean and sd of the distribution,

• rnorm() that generates the random values of the variable, its arguments are size
of the sample n and parameters mean and sd of the distribution.

Example 3.3.4 Assume that the test scores of a college entrance exam fits a normal distri-
bution. Furthermore, the mean test score is 70, and the standard deviation is 10. What is the
percentage of students

a) scoring 85 or more in the exam,
b) scoring 60 or less in the exam.
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Solution: We apply the function pnorm() of the normal distribution with mean 70 and
standard deviation 10. Since we are looking for the percentage of students scoring higher
than 85, we are interested in ℙ (𝑋 ≥ 85), means the upper tail of the normal distribution.
Therefore we use the logical parameter lower.tail=FALSE.

1 > pnorm(85, mean=70, sd=10, lower.tail=FALSE)
2 [1] 0.0668072

Therefore, the percentage of students scoring 85 or more in the college entrance exam is
6.68%.

In order to answer the question b), we need to calculate the probability ℙ (𝑋 < 60).
We use the pnorm() function again:

1 > pnorm(60, mean=70, sd=10)
2 [1] 0.1586553

Therefore, the percentage of students scoring 60 or less in the college entrance exam is
15.87%.

Example 3.3.5 According to the data from www.uvzsr.sk, the average height of 18 years
old boys in Slovakia was 179 cm wit the standard deviation of 6.68 cm in the year 2011. If
we suppose that the height is normally distributed, let us find the probability, that randomly
selected boy in age of 18 years would be

a) more than 200 cm tall,
b) less than 160 cm tall.

Solution: Let us denote the random variable that describes the height as 𝑋 , To answer
the question a) we have to compute the probability ℙ (𝑋 ≥ 200). It equals 0.0008 and we
find it using the function pnorm(), where we set the argument lower.tail=FALSE, how
illustrated in the following command:

1 > pnorm(200,179,6.68,lower.tail=FALSE)
2 [1] 0.000834096

Similarly, to answer the question b) we use the function pnorm but we must not set the
argument lower.tail in this case. So to find the probability ℙ (𝑋 < 160) we use the
following command.

1 > pnorm(160,179,6.68)
2 [1] 0.002225376

It means that the probability we were searching for is 0.002.

3.3.4 𝜒 2 distribution
The chi-squared distribution (also chi-square ) or 𝜒2(𝑛)-distribution with 𝑛 degrees of
freedom arises as the distribution of a sum of the squares of k independent standard
normal random variables. Formally, if 𝑋𝑖 ∼ 𝑁 (0, 1), 𝑖 = 1, … , 𝑛 are independent random
variables, then random variable 𝑌 = 𝑋 21 +⋯𝑋 2𝑛 follows the 𝜒2(𝑛) distribution. Its density
has the form

𝑓 (𝑥) = {
e−𝑥/2𝑥𝑛/2−1
2𝑛/2Γ(𝑛/2) 𝑥 > 0,
0 𝑥 ≤ 0,

(3.9)
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Figure 3.2: Density functions of the 𝜒2(𝑛) distribution with different numbers of degrees
of freedom 𝑛.

The parameter 𝑛 of the 𝜒2 distribution is referred as the number of degrees of freedom.
The graphs of the densities with different numbers of freedom are depicted in the fig-
ure 3.2. This distribution is used to construct the confidence interval a tests for the vari-
ance of the normal distribution and in the goodness of fit and independence tests. In
the R language the chi-squared distribution is assigned as chisq. That means, here are
implemented functions pchisq(), dchisq(), qchisq() and rchisq().

3.3.5 Student’s 𝑡 distribution
The Student’s 𝑡(𝑛)-distribution with 𝑛 degrees of freedom arises as the distribution of
the ratio of two random variables: 𝑋 that follows the standardized normal distribution
𝑁(0, 1) and √𝑌/𝑛, where 𝑦 follows the 𝜒2(𝑛) distribution. Its density can be expressed in
the form

𝑓 (𝑥) = Γ ((𝑛+1)/2)
√𝑛𝜋Γ (𝑛/2) (1 + 𝑥2/𝑛)(𝑛+1)/2

, 𝑥 ∈ ℝ, (3.10)

where the parameter 𝑛 represents the number of degrees of freedom. The graphs of
the densities with different numbers of freedom are depicted in the figure 3.3. The 𝑡-
distribution plays a role in a number of widely used statistical analyses, including Stu-
dent’s 𝑡-test for assessing the statistical significance of the difference between two sample
means, the construction of confidence intervals for the difference between two popula-
tion means, and in linear regression analysis.

In the R environment, the Student’s distribution is implemented simply as t. Using
the prefixes, we have at disposal functions pt(), dt, qt() and rt().
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Figure 3.3: Denstity of the Student’s distribution 𝑡(𝑛) with different numbers of degrees
of freedom 𝑛.

3.3.6 𝐹 -distribution
The 𝐹 -distribution, also known as Snedecor’s 𝐹 -distribution or the Fisher-Snedecor dis-
tribution arises as the distribution of the random variable 𝑌 that is the ratio of two chi-
square distributed random variables. More precisely let random variable 𝑋1 follows the
distribution 𝜒2(𝑛1) and 𝑋2 follows the distribution 𝜒2(𝑛2). Than the random variable

𝑌 =
𝑋1/𝑛1
𝑋2/𝑛2

follows the Fisher-Snedecor distribution 𝐹(𝑛1, 𝑛2) with 𝑛1 and 𝑛2 degrees of freedom. We
can express its density with use of the Beta function in the form

𝑓 (𝑥) = { ( 𝑛1𝑛2 )
𝑛1/2

⋅ 𝑥𝑛1/2−1
𝐵(𝑛1/2,𝑛2/2) (1 + 𝑛1/𝑛2𝑥)−(𝑛1+𝑛2)/2 𝑥 > 0

0 𝑥 ≤ 0
(3.11)

How the numbers of freedom influence the shape of the density we can observe on
figures 3.4 and 3.5. The Fisher-Snedecor distribution is of great importance in mathemat-
ical statistics. It is used in hypothesis tests for equality of variances of two sets (called
F-tests) or in analysis of variance. In the R environment, the Fisher-Snedecor distribution
is implemented simply as f. Using the usual prefixes, we have at disposal functions pf(),
df, qf() and rf().
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Figure 3.4: Density of the Fisher-Snedecor distribution 𝐹(3, 𝑛2) for different numbers of
degrees of freedom 𝑛2.
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Figure 3.5: Density of the Fisher-Snedecor distribution 𝐹(𝑛1, 3) for different numbers of
degrees of freedom 𝑛1.
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62 Chapter 4

Programming in R

4.1 Built-in functions
Almost all actions in R are made through functions. The built-in functions are functions
that are already defined and implemented in the programming framework. The R envi-
ronment includes a rich set of the built-in functions that enable to perform almost every
task. These built-in functions can be divided into following categories with respect to
their functionality.

4.1.1 Math functions

This category of functions provides a large variety of mathematical functions to perform
the mathematical calculation. Some of them we have already mention in the table 1.5.
Here we introduce some additional details to using these functions.

We start with the trigonometric functions. All three mentioned functions sin(x),
cos(x) and tan(x) work with argument given in radians. It means, that in the case of
using the grades, we have to reshape the value. Knowing that 𝜋 = 180∘, we can recalculate
the argument as 𝑟 = 𝜋𝛼/180, where 𝑟 is the new measure in radians and 𝛼 is the old value
given in grades. Alternatively we can also use the function deg2rad() from the REdaS
package. We illustrate the result in the following listing.

1 > library(REdaS)
2 > sin(90)
3 [1] 0.8939967
4 > sin(deg2rad(90))
5 [1] 1
6 > tan(45)
7 [1] 1.619775
8 > tan(deg2rad(45))
9 [1] 1

The logarithmic function log() computes as the default value the natural logarithm.
To get logarithm with any base, we must declare the base value as the second argument
of the function. Let us see the listing.

1 > log(4)
2 [1] 1.386294
3 > log(4,base=2)
4 [1] 2

One of the frequently used function in mathematics is the sqrt() function. We
have already mention its ability to work with the complex numbers, but it is necessary
to declare in the function argument, that we require this kind of answer. We can do it by
using the imaginary unit i or the function as.complex(). Let us see the listing.



Table 4.1: List of the functions defined for the complex numbers.

Function Purpose Function Purpose
Re(z) Real part of 𝑧. Im(z) Imaginary part of 𝑧.
Mod(z) Modulus of 𝑧. Arg(z) Argument of 𝑧.
Conj(z) Conjugate complex number 𝑧.

1 > sqrt(-25)
2 [1] NaN
3 Warning message:
4 In sqrt(-25) : NaNs produced
5 > sqrt(-25+0i)
6 [1] 0+5i
7 > sqrt(as.complex(-25))
8 [1] 0+5i

Some other useful functions for computing with the complex numbers are listed in
the table 4.1. Their using illustrates the following listing:

1 > Mod(1+1i)
2 [1] 1.414214
3 > Arg(1+1i)
4 [1] 0.7853982
5 > Re(1+1i)
6 [1] 1
7 > Im(1+1i)
8 [1] 1
9 > Conj(1+1i)

10 [1] 1-1i

4.1.2 String functions
Besides the numerical data we frequently need to extract information from textual data or
reformat textual data. For example we may want to concatenate the first and last name
of the persons and ensure that first letter of each is capitalized. In such situations are
useful the string functions, that are listed in the table 4.2.

Function nchar() determines the size of each elements of an character vector. Its
answer is an integer vector giving the sizes of each element. In general, it has four ar-
guments. The first is the string vector, the second argument is type that declares a type
of chars. It can be chars, bytes or width. The third of the function argument is log-
ical variable allowNA that determinates if should NA be returned for invalid multibyte
strings or ”bytes”-encoded strings. Finally, the last argument keepNA is also logical and it
states if NA should be returned where ever x is NA. If FALSE the function nchar() returns
2, as that is the number of printing characters used when strings are written to output.
We illustrate its using in the next listing:

1 > z<-c("yellow","black","white")
2 > nchar(z)
3 [1] 6 5 5
4 > str<-"This␣is␣a␣long␣string"
5 > nchar(str)
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Table 4.2: List of the functions defined for the string operations.

Function Purpose Function Purpose
nchar() Number of characters in

string.
substr() Extract or replace

substrings.
grep() Search for a pattern in

string.
strsplit() Splits the string at given

split point.
sub() Search for a pattern in

string and substitute it.
paste() Concatenates the strings

using submitted separate
therm.

toupper() Converts the string into
the upper case.

tolower() Converts the string into
the lower case.

6 [1] 21
7 > z<-c("",NULL,"black",NA)
8 > nchar(z,keepNA=TRUE)
9 [1] 0 5 NA

10 > nchar(z,keepNA=FALSE)
11 [1] 0 5 2

Related feature is a function nzchar() that represents a fast way to find out if el-
ements of a character vector are non-empty strings. How we can see in the following
listing, the answer is a logical vector.

1 > z<-c("yellow","black","white")
2 > nzchar(z)
3 [1] TRUE TRUE TRUE
4 > z<-c("",NULL,"black",NA)
5 > nzchar(z)
6 [1] FALSE TRUE TRUE

To find a subscribed pattern in the string we use the grep() function. This function
has formally four arguments. Its first argument is pattern submitted as a string we
are searching for. The second argument is the string vector x we are searching in. The
optional arguments are logical values ignore.case and fixed. The default value of
ignore.case is set FALSE and the upper and lower cases are distinguished in the search.
If we set fixed=FALSE, which is the default value of the argument, then pattern is a
regular expression. If fixed=TRUE, then pattern is a text string. The function returns
matching indices. The next source code illustrates using of the function and its answers.

1 > str <- c('abcd','bdcd','abcdabcd')
2 > pattern<- 'abc'
3 > grep(pattern, str)
4 [1] 1 3
5 > pattern<- 'Abc'
6 > grep(pattern, str)
7 integer(0)
8 > grep(pattern, str,ignore.case=TRUE)
9 [1] 1 3

10 > pattern<- 'a*'
11 > grep(pattern, str)
12 [1] 1 2 3
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13 > grep(pattern, str,fixed=TRUE)
14 integer(0)

To substitute the found pattern by another string we use the function sub(). It has
in general five arguments. Obligatory arguments are pattern and vector of strings x
that have the same meaning as in the grep() function. The third, but written on the
second position, obligatory argument is replacement that defines the text to replace
the pattern. Two optional arguments ignore.case and fixed are the same as in the
grep() function. How the function works we see in the following listing.

1 > str<-"Bohemia␣does␣not␣use␣EURO␣currency"
2 > str<-sub("Bohemia","Czechia",str)
3 > str
4 [1] "Czechia␣does␣not␣use␣EURO␣currency"

Another function to manipulate the text string is substr(). It has three arguments:
the text string x and start and stop to declare position of the first and last character to be
selected or replaced. The previous substitution in the string we can be alternatively done
using the substr() function,.The following code illustrates the alternatively solution.

1 > str<-"Bohemia␣does␣not␣use␣EURO␣currency"
2 > substr(str,1,7)
3 [1] "Bohemia"
4 > substr(str, 1, 5)<-"Czech"
5 > str
6 [1] "Czechia␣does␣not␣use␣EURO␣currency"

Function strsplit() splits the elements of the character vector x at positions de-
fined by the second split argument. We illustrate, how the sentence can be split into
single word or letters. The third example shows split by any pattern.

1 > strsplit(str,"")
2 [[1]]
3 [1]"C" "z" "e" "c" "h" "i" "a" "␣" "d" "o" "e" "s" "␣" "n" "o" "t"
4 "␣" "u" "s"
5 [20] "e" "␣" "E" "U" "R" "O" "␣" "c" "u" "r" "r" "e" "n" "c" "y"
6 > strsplit(str, "␣")
7 [[1]]
8 [1] "Czechia" "does" "not" "use" "EURO" "currency"
9 > strsplit(str,"e")

10 [[1]]
11 [1] "Cz" "chia␣do" "s␣not␣us" "␣EURO␣curr" "ncy"

To concatenate the strings we use function paste(), whose arguments are the
strings to be concatenated and sep that defines the string to separate the concatenated
elements. How the function works we see in the following code.

1 > paste("x",1:4,sep="")
2 [1] "x1" "x2" "x3" "x4"
3 > paste("Today␣is",date(),sep="␣")
4 [1] "Today␣is␣Tue␣Apr␣27␣10:39:55␣2021"
5 > paste(c("a","b"),1:4,sep="/")
6 [1] "a/1" "b/2" "a/3" "b/4"

Two related functions toupper() and tolower transform given string into the up-
per case and lower case letters respectively. Let us see the code.

65



1 > toupper(str)
2 [1] "CZECHIA␣DOES␣NOT␣USE␣EURO␣CURRENCY"
3 > tolower(str)
4 [1] "czechia␣does␣not␣use␣euro␣currency"

4.1.3 Statistical and probability functions
Many built-in functions related to the probabilities we have already discuss in the chap-
ter 3. There are summarized all prefixes for the probabilistic functions and as well most of
the implemented probability distribution. In this subsection we introduce some functions
used in statistics, especially the sample characteristics. Common statistical function are
presented in table 4.3.

Similarly as all functions, as well statistical functions have optional arguments that
affect their outcomes. To state the sample mean of the given vector x, we use the function
mean(x). It has also optional argument trim that state the percentage of the highest and
lowest values being dropped from the computation and so it returns the trimmed mean.
Second optional argument na.rm is a logical value indicating whether ‘NA’ values should
be stripped before the computation proceeds. Let us compare the results in the listing.

1 > x<-c(1,3,5,10,12)
2 > mean(x)
3 [1] 6.2
4 > mean(x,trim=0.2)
5 [1] 6
6 > x<-c(1,5,2,12,NA,3,6)
7 > mean(x)
8 [1] NA
9 > mean(x,na.rm=TRUE)

10 [1] 4.833333
11 > mean(x,na.rm=TRUE,trim=0.17)
12 [1] 4

Let us suppose, we want to analyse the the delays of the train Nr. 172 Hungaria in
the station Brno hl.n. (main station) during the week from April the 21-st till April the
27-th. The reported delays in single days were 0,9,0,42,14,0, and 11 minutes. Using the
statistical functions we find that the average delay is

1 > delay<-c(0,9,0,42,14,0,11)
2 > mean(delay)
3 [1] 10.85714

and its standard deviation resp. variance is:

1 > sd(delay)
2 [1] 14.92681
3 > var(delay)
4 [1] 222.8095

For the median delay we get

1 > median(delay)
2 [1] 9

Besides median, we can find other quantlies using the quantile() function. Its
default outcome are the quartiles, how illustrates the following listing.
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Table 4.3: List of the statistical functions .

Function Purpose Function Purpose
mean() Sample mean. median() Sample median.
sd() Standard deviation. var() Sample variance.
mad() Median absolute deviation. quantile() Quantiles, default returns

quartiles.
range() Range of the values. sum() Sum of the vector

elements.
min() Minimum. max() Maximum.

1 > quantile(delay)
2 0% 25% 50% 75% 100%
3 0.0 0.0 9.0 12.5 42.0

To specify the probability levels for the quantiles, we must set the optional argument
prob of the quantile function. This argument requires the probabilities in the form of
the numeric vector, how we can see in the listing.

1 > quantile(delay,prob=c(0,0.33,0.67,1))
2 0% 33% 67% 100%
3 0.00 0.00 11.06 42.00

In addition to the standard deviation and variance there is a robust measure of the
variability of a univariate sample of quantitative data. This measure is called median
absolute deviation and for the sample 𝑋1, … , 𝑋𝑛 it is defined by formula:

MAD(𝑋) = median{|𝑋𝑖 − 𝑋 |}
where 𝑋 is median of the data. This measure is implemented in R as the function mad().
So we get the median absolute deviation of the train departure delays using the following
code:

1 > mad(delay)
2 [1] 13.3434

The range of the recorded delays we obtain using the function range() whose out-
come is a vector including the start and end points of the range of the sample values. How
we can see from the source code, alternatively we can state the range using the functions
max() and min() that provide the maximum and minimum of the sample respectively.

1 > range(delay)
2 [1] 0 42
3 > c(min(delay),max(delay))
4 [1] 0 42

Computing the sum of the delays does not give a real sense, but we can illustrate
how to state the sample mean alternatively using the sum() function.

1 > sum(delay)/length(delay)
2 [1] 10.85714
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Table 4.4: List of the other useful functions .

Function Purpose Function Purpose
seq() Generate a sequence rep() Repeat x n-times.
sort() Sort the vector x order() List sorted element

numbers.
ls() List objects in current

environment
rev() List the elements of x in

reverse order

4.1.4 Other useful functions

List (very incomplete) of some other useful functions is presented in table 4.4. The func-
tion seq() has three optional arguments from, to and by and it generates the sequence
of numbers starting by from value and ends in to value. The last argument by defines
the step of the sequence. We can illustrate the use in the listing:

1 > seq(10)
2 [1] 1 2 3 4 5 6 7 8 9 10
3 > seq(5,15)
4 [1] 5 6 7 8 9 10 11 12 13 14 15
5 > seq(5,15,2)
6 [1] 5 7 9 11 13 15

Function rep() has two arguments, the vector x to be repeated and number n of
the repeating cycles. We illustrate the use in the following listing:

1 > rep(1,10)
2 [1] 1 1 1 1 1 1 1 1 1 1
3 > rep(c(1,3),4)
4 [1] 1 3 1 3 1 3 1 3
5 > rep("hello",3)
6 [1] "hello" "hello" "hello"

The functions sort() and order are closely related. They are both joined with
sorting the vectorx, but sort() gives sorted values while order() gives the indices of
ordered the components in the original vector. Let us see the difference in the listing:

1 > x<-c(5,2,10,3,7,8)
2 > sort(x)
3 [1] 2 3 5 7 8 10
4 > order(x)
5 [1] 2 4 1 5 6 3

Both functions have logical argument decreasing with default value FALSE. Setting it
to TRUE, we get sorted sequence in descending order.

Function rev() gives the vector x in reverse order. If we apply it on the vector x
from the previous listing, we get:

1 > rev(x)
2 [1] 8 7 3 10 2 5

Combining the functions rev() and sort()we can get the same result like the function
sort() with option decreasing=TRUE:
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Table 4.5: List of the relation operators used in conditional statements.

operator meaning operator meaning
== equals != not equal.
> greater than < less than
>= greater than or equals <= less than or equal

1 > rev(sort(x))
2 [1] 10 8 7 5 3 2

The complete list of the built in function we get typing the command builtins().
Further, using the command help(function_name) we obtain the full description of
each from the built in functions.

4.2 Program flow controls

4.2.1 Conditional statements

A condition is, in general, understood as an expression that can be either true or false. The
conditional statement then allows to perform a command or set of commands only under
certain conditions. Conditional statements include if(), the combination if()/esle(),
ifelse(), and switch(). Each statement supports source code branching by altering
the control flow.

If statement

The if() statement is common in all programming languages and it is the simplest con-
ditional statement. When R runs, the if() statement performs operations based on a
simple condition. The general syntax of the if() statement is:

if (condition) {commands to be performed if condition holds}

The commands need to be braced only when more than one command is specified. Oth-
erwise we can write one conditionally performed command without braces. In the con-
dition we can use the infix operators listed in table 4.5.

As a simple example we illustarte using the if statement to detect if given integer
number is odd.

1 > x<-5
2 > if(x%%2){print("Odd␣number")}
3 [1] "Odd␣number"
4 > x<-6
5 > if(x%%2){print("Odd␣number")}
6 >

If ... else statement

This extension of the if statement has general syntax in the form:
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if (test_expression) {
statement1
} else {
statement2
}

How we can see, this enables to execute different commands depending on the ful-
filment of the condition. If the test_expression is true, then the statement1 is per-
formed and if it is false the statement2 is executed. We can illustrate it in generalisation
of the previous code to detecting the parity of the number.

1 > x<-5
2 > if(x%%2){print("Odd␣number")} else {print ("Even␣number")}
3 [1] "Odd␣number"
4 > x<-10
5 > if(x%%2){print("Odd␣number")} else {print ("Even␣number")}
6 [1] "Even␣number"

We can further customize the control level with nesting the else if statement. With
else if, we can add as many conditions as we want. The syntax is:

if (condition1) {
statement1
} else if (condition2) {
statement2
} else if (condition3) {
statement3
} else {
statement4

}
Using of the nested if statements we can illustrate on the example with three dif-

ferent VAT levels.

Example 4.2.1 VAT has different rate according to the product purchased. Imagine we have
three different kind of products with different VAT applied (actually valid in Slovakia):

Category Products VAT
A Masks, respirators (actually freed from VAT) 0%
B Selected foods, books, magazines, medicaments 10%
C All others 20%

Let us write a chain to apply the correct VAT rate to the product a customer bought.

1 > category <- 'B'
2 > price<-50
3 > if (category =='A'){
4 cat('A␣vat␣rate␣of␣0%␣is␣applied.','The␣total␣price␣is',price *1.00)
5 } else if (category =='B'){
6 cat('A␣vat␣rate␣of␣10%␣is␣applied.','The␣total␣price␣is',price *1.10)
7 } else {
8 cat('A␣vat␣rate␣of␣20%␣is␣applied.','The␣total␣price␣is',price *1.20)
9 }

10 A vat rate of 10% is applied. The total price is 55
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The ifelse statement

The if and if ... else statements should not be applied when the condition being
evaluated is a vector. It is best used only when meeting a single element condition. In
the case of vector condition, the if statement evaluates the condition only for the first
element of the vector. If we enter the code:

1 > x<-c(5,4,3,2,1)
2 > if(x>3){x*2}

one can expect the result to be 10,8,3,2,1. But the real outcome is:

1 [1] 10 8 6 4 2
2 Warning message:
3 In if (x > 3) { :
4 the condition has length > 1 and only the first element will be used

To get the expected outcomewe have to apply the elseif statement with general syntax:

ifelse(condition, expression1, expression2)

The ifelse() function evaluates both expression1 and expression2 and then returns
the appropriate values from each based on the element-by-element value of condition.
If an element passes condition as TRUE, ifelse() returns the corresponding value of
expression1; otherwise, it returns expression2. To get the expected result, our pre-
vious code should me modified into the following form:

1 > ifelse(x>3,2*x,x)
2 [1] 10 8 3 2 1

The switch() function

The switch() is useful when we want the function to do different things in different
circumstances. This function tests an expression against elements of a list. Each value in
the list is called case. If the value evaluated from the expression matches item from the
list, the corresponding value is returned. Here is the syntax of the switch() function:

switch (expression, list)

Here, the expression is matched with the list of values and the corresponding value is
returned. If there is more than one match for a specific value, then the switch statement
will return the first match found of the value matched with the expression.

We illustrate the use of the switch() function in decision if the given integer is
even or odd. Let us note we have to add +1 in the expression as the cases are numbered
starting from 1.

1 > x<-10
2 > switch(x%%2+1,"even","odd")
3 [1] "even"
4 > x<-9
5 > switch(x%%2+1,"even","odd")
6 [1] "odd"
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The switch() function can be used as well with the string expression. If the ex-
pression is a character string, switch() will return the value based on the name of the
element. As an example, let us see the following code.

1 > x <- "a"
2 > switch(x, "a"="apple", "b"="banana", "c"="cherry")
3 [1] "apple"
4 > x <- "c"
5 > switch(x, "a"="apple", "b"="banana", "c"="cherry")
6 [1] "cherry"

How we mentioned above, in case of multiple matches, the value of first matching ele-
ment is returned.

1 > x <- "a"
2 > switch(x, "a"="apple", "a"="apricot", "a"="avocado")
3 [1] "apple"

In the switch() we can define the default value which is returned if no match is
present. In such situations is returned the unnamed case element. If more than one
unnamed elements are present in the list an error occurs. We illustrate the default case
in the following code:

1 > x <- "x"
2 > switch(x, "a"="apple", "b"="banana", "c"="cherry","some␣fruit")
3 [1] "some␣fruit"

4.2.2 Loops
All modern programming languages provide special constructs that allow for the repeti-
tion of instructions or blocks of instructions. The R language is no exception. According
to the R base manual, among the control flow commands, the loop constructs are for,
while and repeat, with the additional clauses break and next.The next sections will
take a closer look at each of these structures.

for loops in R

The for loop allows us to repeat a command or a block of commands a fixed number of
times. The number of repeating is given by scope of values or by a predefined sequence
of permissible values. The general syntax of the for loop is like this:

for (val in sequence)
{
statement
}

where sequence is a vector and val takes on each of its value during the loop. In each
iteration, statement is evaluated. Below is an example to count the number of numbers
in a vector that exceeds its average value.

1 > x<-c(2,5,10,8,6,3,12)
2 > limit<-mean(x)
3 > count<-0
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4 > for(i in x){
5 if (i>limit) count<-count+1
6 }
7 > count
8 [1] 3

We can stop the loop before it has looped through all the items applying the break
statement. Let us see the following source code:

1 > x<-c(2,4,6,5,8,10,11,12,14,20)
2 > for (i in x){
3 if(i%%2==1) {break}
4 print(i/2)
5 }
6 [1] 1
7 [1] 2
8 [1] 3

The loop stops on the first odd number because we select to finish the loop by break
statement. With the next statement, we can skip an iteration without terminating the
loop. When the loop in the modified source code below passes odd value, it will skip it
and continue to loop.

1 > x<-c(2,4,6,5,8,10,11,12,14,20)
2 > for (i in x){
3 if(i%%2==1) {next}
4 print(i/2)
5 }
6 [1] 1
7 [1] 2
8 [1] 3
9 [1] 4

10 [1] 5
11 [1] 6
12 [1] 7
13 [1] 10

while loops

the while loop is suitablewhenwewant to repeat a command or block of commands until
a given condition is satisfied however we do not know in advance how many repetitions
are necessary to achieve this. the syntax of the while loop is.

while (condition){
commands
}

Here, condition is evaluated and the body of the loop is entered if the result is TRUE.
We will illustrate the use of the while loop in simulating the die rolls. The source

code represents rolling the imaginary dice until the first roll of six.

1 > roll<-0
2 > while(roll!=6){
3 roll<-sample(1:6,1)
4 print(roll)
5 }
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6 [1] 1
7 [1] 4
8 [1] 3
9 [1] 4

10 [1] 6

repeat loops

The repeat loop is similar to the while loop, but it ismade so that the block of commands
is executed at least once, no matter what the result of the condition. The general syntax
of the repeat loop is like this:

repeat {
statement
}

There is no condition check in repeat loop to exit the loop. We must ourselves put a
condition explicitly inside the body of the loop and use the break statement to exit the
loop. We can modify the previous code using the repeat loop into the form:

1 > repeat{
2 roll<-sample(1:6,1)
3 print(roll)
4 if(roll==6){break}
5 }
6 [1] 5
7 [1] 2
8 [1] 1
9 [1] 5

10 [1] 6

4.3 User defined functions
The users’ ability to add functions is one of the great strengths of the R environment.
The general structure of a function is given below.

myfunction_name <- function(arg1, arg2, ... ){
statements
return(object)
}

The different components of a function are:

• Function Name which is the actual name of the function. It is stored in R environ-
ment as an object with this name.

• Arguments which are placeholders. When a function is invoked, we pass values
to the arguments. Arguments are optional, that is, a function may contain no ar-
guments. Also arguments can have default values.

• Function Body which contains a collection of statements that defines what the
function does. The body of the function goes inside the curly brackets {}.
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• Return Value which is the last expression in the function body to be evaluated.

We will illustrate the user definition of the function in the following example.

Example 4.3.1 Let us suppose, we want to define function cubes() that prints the third
powers of numbers in sequence.

We define the function by the following source code:

1 cubes <- function(a) {
2 for(i in 1:a) {
3 b <- i^3
4 print(b)
5 }
6 }

Now we are ready to call the function and get the answer:

1 > cubes(6)
2 [1] 1
3 [1] 8
4 [1] 27
5 [1] 64
6 [1] 125
7 [1] 216

We can define this function as well without arguments. In such circumstances it
produces the sequence of the cube powers of the constant length. The definition of the
function cube() without arguments is as follows (in this case it produces the sequence
of the first five cubic powers) :

1 cubes <- function() {
2 for(i in 1:5) {
3 b <- i^3
4 print(b)
5 }
6 }

Let us emphasize that when calling the function without arguments we cannot omit the
parentheses, so to get the answer we have to call the function as follows:

1 > cubes()
2 [1] 1
3 [1] 8
4 [1] 27
5 [1] 64
6 [1] 125

The arguments to a function call can be supplied in the same sequence as defined in
the function or they can be supplied in a different sequence but assigned to the names of
the arguments. Let us rewrite the cubes() function with two arguments, that allow to
submit the starting and ending value of the cubes sequence. So we have the source code:

1 cubes <- function(start,end) {
2 for(i in start:end) {
3 b <- i^3
4 print(b)
5 }
6 }
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Now we can call the function by position of the arguments (let us note the decreasing
sequence of cubes due to larger first argument):

1 > cubes(12,10)
2 [1] 1728
3 [1] 1331
4 [1] 1000

Alternatively we can call the function by names of the arguments (let us note, when
calling by names we must not save the order of arguments in the function definition):

1 > cubes(end=12,start=10)
2 [1] 1000
3 [1] 1331
4 [1] 1728

We can define the default values of the arguments in the function definition. Then
we can call the function without submitting the arguments. The arguments values are
submitted only to describe their values. Let us note, that in R it is not obligatory to
submit all arguments but is good enough to call the function by names and declare only
the values of the arguments to be changed. So we can redefine the cubes() function
with default arguments:

1 cubes <- function(start=1,end=10) {
2 for(i in start:end) {
3 b <- i^3
4 print(b)
5 }
6 }

Then we call the function with new the ending value:

1 > cubes(end=4)
2 [1] 1
3 [1] 8
4 [1] 27
5 [1] 64

Until now we have been printing the value on the console. To explicitly return
values, we use the return() function. This allows to store the function output for the
later work with it. if we try to store the result of previously defined function cubes() in
variable z, we get:

1 > z<-cubes(2,2)
2 [1] 8
3 > z
4 NULL

It means the variable z does not include any value. We must redefine the function in the
following manner:

1 cubes <- function(start=1,end=10) {
2 for(i in start:end) {
3 b <- i^3
4 return(b)
5 }
6 }
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Then we can run the commands:

1 > z<-cubes(2,2)
2 > z
3 [1] 8

The function cubes() actually returns only one value that is equal to the cube of the
starting value and ignore the rest of the declared scope. To extend the result to whole
scope, we must define the output variable as vector how illustrates the following source
code:

1 cubes <- function(start=1,end=10) {
2 b<-vector() # initializing the vector
3 for(i in start:end) {
4 b[i-start+1]<-i^3 # adjusting the index to start form 1
5 }
6 return(b)
7 }

Now we obtain the complete sequence of third powers in the submitted extent:

1 > z<-cubes(4,8)
2 > z
3 [1] 64 125 216 343 512

In R programming, functions do not return multiple values. However, we can create a
list that contains multiple objects that we need a function to return. For example:

1 powers<-function(start=1,end=10) {
2 b<-vector()
3 c<-vector()
4 for(i in start:end) {
5 b[i-start+1]<-i^2
6 c[i-start+1]<-i^3
7 }
8 out<-list(b,c)
9 return(out)

10 }

gives the output

1 > powers(1,5)
2 [[1]]
3 [1] 1 4 9 16 25
4
5 [[2]]
6 [1] 1 8 27 64 125

When defining the user function we can use ellipsis. Ellipsis are not something
which is specific to R programming as it is known from many other programming lan-
guages. An ellipsis is denoted in R programming by ... (exactly three dots). Its role
is to enable the function to take any number of named or unnamed arguments. It is
especially useful for creating customized versions of existing functions or in providing
additional options to end-users. Ellipsis ... include three consecutive periods at the end
of a function declaration. Also include three periods in at the end of the argument list for
the function to pass arguments to. The ellipsis is just a special argument, so be sure to
include a comma between any other arguments and the ellipsis. Following source code
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illustrates implementation of the ellipsis. The function ellipsisDemo() only returns
the names and values of all submitted variables.

1 > ellipisDemo <- function(...) {
2 cat("I␣got␣the␣following␣arguments:\n")
3 print(list(...))
4 }
5 > ellipisDemo(a = 5, by = "orange", c = c(2,3))
6 I got the following arguments:
7 $a
8 [1] 5
9 $by

10 [1] "orange"
11 $c
12 [1] 2 3

Combination of the named arguments we illustrate by defining the function
my_histogram() that creates histogram of the given random sample.1

1 myhistogram <- function(x, border="blue", ..){
2 hist(x,border=border ,...)
3 }
4 > set.seed(5)
5 > myhistogram(rnorm(1000), breaks=30)
6 > myhistogram(rnorm(1000),border="red")

In the source we have defined the function containing the named arguments x for the
sample and border that states the colour of the histogram with default value blue. In
the first calling the function we have used the additional argument breakes, whichg
specifies number of columns in the histogram and the resulting graphwe see in figure 4.1.
The second call of the function dose not used the ellipsis arguments, but changes the
default colour to red. The result we see in figure 4.2.

4.4 Running scripts in R
While entering and running our code at the R command line is effective and simple.
However, this technique has its limitations. Each time we want to execute a set of com-
mands, we have to re-enter them at the R command line. Moreover, complex commands
are potentially subject to typographical errors, necessitating that they be re-entered cor-
rectly. Repeating a set of operations requires re-entering the code stream. Fortunately,
R provides a method to mitigate these issues. R scripts are that solution. An R script is
simply a text file containing (almost) the same commands that we would enter on the
command line of R. The word “almost” refers to the fact that if you are using sink() to
send the output to a file, you will have to enclose some commands in print() to get the
same output as on the command line.

It is easy to create a new R script. We can open a new empty script by clicking
selecting New File in any text editor. Alternatively, we can open an existing file if we
want to modify or extend some R script we have already created sooner. Now we are
ready to edit the script by one command per line. We remind that comments are edited
with the # sign in the begin of the line.

1For details about the function hist() see the section 5.3
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Figure 4.1: Histogram created using the
user defined function myhistogram with
ellipsis argument break
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Figure 4.2: Output of the myhistogram
with changed border argument and no call
of ellipsis arguments.

We can save our script by selecting the Save or Save as function from the editor
menu. The R script we save with the .R extension.

Running R scripts from the command line can be a powerful way to:

• automate our R scripts,
• integrate R into production,
• call R through other tools or systems.

There are basically two Linux commands that are used. The first is the command

Rscript filename.R

and is preferred. The older command is

R CMD BATCH filename.R

We can call these directly from the command line or integrate them into a bash
script. Wou can also call these from any job scheduler.
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80 Chapter 5

Elementary graphics

5.1 Scatter plots
A Scatter Plot uses dots to represent values for two different numeric variables. The
position of each dot on the horizontal and vertical axis indicates values for an individual
data point. Themost common use of the scatter plot is to display the relationship between
two variables and observe the nature of such a relationship. The relationships observed
can either be positive or negative, non-linear or linear, and/or, strong or weak.

The most common applications and uses of the scatter plots are:

1. Demonstration of the relationship between two variables.

2. Identification of correlation relationships.

3. Identification of data patterns.

5.1.1 Creating a scatter plots
The simplest way to create a scatter plot is to use the function plot() with two argu-
ments x and y that contain the values we want to plot. These variables must be numeric
vectors of the same length.

Example 5.1.1 Let us suppose, that the local ice cream shop keeps track of how much ice
cream they sell versus the noon temperature on that day. Here are their figures for the last
10 days:

Temperature 28 30.2 32 31 29.5 26 31.5 30 29 34
Sales (€) 540 560 530 570 525 490 530 530 500 580

Draw the scatter plot of the daily sales.

Solution: At first we define two numeric vectors: x that contains the temperatures
a,d y that will represent the daily sales. Requested scatter plot we get using the function
plot. The whole procedure is recorded in the source code:

1 > x<-c(28,30.2,32,31,29.5,26,31.5,30,29,34)
2 > y<-c(540,560,530,570,525,490,530,530,500,580)
3 > plot(x,y)

The corresponding scatter plot we present in the figure 5.1. One can see this scatter
plot is too simple and does not look very nice. It means some customizations are nec-
essary. Before we explain the customization of the graph, we describe how we can save
the resulting graph into a graphics file.
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Figure 5.1: Scatter plot to the example 5.1.1
with default dot characters

26 28 30 32 34

50
0

52
0

54
0

56
0

58
0

x

y

Figure 5.2: Scatter plot to the example 5.1.1
with modified dot characters

Table 5.1: List of the available formats to save the graphical outputs in the R environment.

Function Format
pdf() Vector pdf format, best choice when used with pdflatex,

easily resizable.
svg() Vector svg format+, easily resizable.
postscript() Vector postscript format ps, easily resizable.
png() Bitmap format with high resolution, does not resize.
jpeg() Compressed bitmap format, does not resize.
bmp() High resolution bitmap format, does not resize.
tiff() High resolution bitmap format, does not resize.

In order to save the outcomes of the graphic functions, we have to at first decide
about the output format that we want to use. The list of available saving formats is given
in the table 5.1.

The only obligatory argument of the saving functions is the name of the file that we
will use to save your graph. If necessary, this file name has tu be submitted with the full
path to the directory, where we plan to save it. We may want to make adjustments to the
size of the plot, resolution and others, before saving it. These adjustments are submitted
as additional arguments of the plot() function, and the are listed in table 5.2. In order
to enclose the file that actually works as an active graphical device, we use the function
dev.off(). So, if we want to save the scatter plot in the pdf format, how presented on
the figure 5.1, we adjust the source code in the following form:

1 > pdf("file.pdf",width=4,height=4,family="Times")
2 > plot(x,y)
3 > dev.off()
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Table 5.2: List of the additional arguments of the graph saving function.

Argument meaning
filename Name of the saved file, with full path if necessary.
width Width of the resulting graph, default value 7 in.
height Heigth of the resulting graph, default value 7 in.
res resolution of the picture, applicable for bitmap formats, the

default value 72 dpi.
units Units of measure, can be px pixels, in inches, cm centimetres

or mm millimetres.
bg Background colour.
fg Foreground colour.
family The fonts used (default Helvetica).

Table 5.3: List of the available dot characters in scatter plots.

Dot pch= Bod pch= Dot pch= Bod pch= Dot pch=

� 0 ◦ 1 4 2 + 3 × 4

� 5 O 6 � 7 S 8 � 9

⊕ 10 A 11 � 12 ⊗ 13 14

� 15 • 16 17 � 18 • 19

• 20 ◦ 21 � 22 � 23 4 24

Working with graphs, we frequently make a plot to the screen at first. To save
the graph in the e, we must re-enter the commands. R also provides the dev.copy()
command, to copy the contents of the graph window to a file without having to re-enter
the commands. To use this approach, we first produce our graph in the usual way. When
we are satisfied with the way it looks, we call dev.copy(), passing it the driver we want
to use and the file name to store it in. For example, to create a png file called newplot.png
from a graph that is displayed by R, we type

1 > dev.copy(png,'newplot.png')
2 > dev.off()

5.1.2 Specifying the dot characters and lines

Function plot() with only two numeric vectors as its arguments plots simple scatter
plot with default empty circles dots characters , how illustrated on figure 5.1. Besides
these two numeric arguments, the function can contain more arguments that enable to
modify the resulting graph. To manage the dot characters we use pch argument of the
function plot. All accessible values of the pch variable are listed in the table 5.3.

For example, if we want to change the dot characters from the empty circles to the
filled triangles, we simply use the additional argument pch=17, how shows the source
code. The result we see on figure 5.2.

82



Table 5.4: List of the available types of graph entered as the type argument of the plot
function.

Type Meaning
p Point graph, the default value.
l Continuous line.
b Continuous line with the points.
c Parts of the continuous lines, with the points omitted.
o Parts of the continuous lines, with the points over-plotted.
h Histogram-like graph.
s stair steps graph.
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Figure 5.3: Scatter plot to the example 5.1.1
with dots and lines.
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Figure 5.4: Scatter plot to the example 5.1.1
with with sorted values.

1 > plot(x,y,pch=17)

Similarly like the dot characters, we can modify the type of the scatter plot and as
well its lines. The type of the graph is defined by the argument type of the function
plot(). The available graph types are summarized in table 5.4.

We illustrate the scatter plots to the example 5.1.1 with graph type given as
type="b" in figures 5.3 and 5.4. Let us note, that in figure 5.3 are the dots joined by
line in the same order how they was entered into the numeric vector x, while in fig-
ure 5.4 the values are sorted increasingly according to the temperature. This does not
correspond with increasing daily temperature. In order to graph the the daily sales in
dependence on increasing temperature, we have to sort the data at first. We apply apply
the functions sort(x) to sort the temperatures and order(x) to get the corresponding
indices of the increasing x values. In the same order we must then sort the y vector. In
the following listing we plot at first the scatter plot with lines in order given by entering
an later we sort the values increasingly by temperature.
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Table 5.5: List of the applicable line types of the plot function.

lty= Line type lty= Line type
1 Solid line (default). 2 Dashed line.
3 Dotted line. 4 Dot-dashed line.
5 Long dashed line. 6 Long and short double dashed line.

1 > plot(x,y,pch=17,type="b")
2 > dev.off()
3 > plot(sort(x),y[order(x)],pch=17,type="b")
4 > dev.off()

The R language enables modification of the line type and as well the line width.
Both are defined by the additional arguments of the plot() function. The line width is
entered simply as number assigned tu the lwd parameter. The line thickness is specified
as a multiplying factor, so line-width lwd = n gives a line width of n * defaultwidth.
The default width depends on the device used for plotting. The general rules are:

• a point is 1/72 of an inch,
• a pixel is standard 1/96 of an inch, or 0.75 points.

This can depend however on the settings of our device. The pdf() and postscript()
devices work with standard point as 1/72 inch, so lwd=1 refers to a line-width of 1/96 inch
or 0.75 points. But when using the bitmap devices we have to take in account also the
resolution res argument. If we set lwd=1, the line width is equal to 1/96 inch, but setting
res=96 gives a line with a thickness of 1pt. The type of the line we set by argument lty.
The applicable options are listed in table 5.5.

5.1.3 Colouring the graph
By default, the points and lines in the plot are black. But we can change this colour
specifying the option col of the function plot() the by names (e.g col=red), fur-
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Figure 5.5: Scatter plot to
the example 5.1.1 with plot
colour set to red colour.
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Figure 5.6: Scatter plot to
the example 5.1.1 with plot
colour set as number 562
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Figure 5.7: Scatter plot
to the example 5.1.1 with
colour set as hexadecimal
number #FF0000
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Table 5.6: List of the graph colouring options of the plot function.

Option Meaning Option Meaning
col.axis Axis annotation colour. col.lab Axes labels colour.
col.main Main title colour. col.sub Subtitle colour.
bg Character filling color. fg Foreground colour.

ther by the number of the colour (e.g. col=636) or with RGB hexadecimal code (e.g
col = “#FFCC00”). The list of colour names we get as an answer of the function
colors().

Figure 5.7 illustrates three possible colour settings for the graph. Besiddes the plot-
ted curve, one can colour other ellements of the plot. The options for the colouring are
summarized in the table 5.6. Let us note, that the option bg for the background colour
changes the colour of the filling in the dot characters (potion pch set from 21 to 25) and
not the backround color of the whole plotting area. In order to change the backround of
the whole graph we have to apply the par() function.

Figure 5.8 illustrates graph to our icecream example 5.1.1 with some colouring, how
we can see in the following source code.

1 >plot (sort(x),y[order(x)],lty =1, type ="b",col="aquamarine",lwd =2,
2 col.axis ="violet",col.main ="green",main ="Main␣title",fg="red",
3 col.lab="coral3",pch=17)
4 > dev.off()

As we mentionen above, to colour the background of the whole plot, we have to use
the par() function., how illustrates the next listing:

1 >par(bg="beige")
2 >plot (sort(x),y[order(x)],lty =1, type ="b",col=30,lwd =2,
3 col.axis ="darkmagenta", col.main ="blue3",col.sub="blue2",
4 main="Main␣title",sub="Subtitle",fg="red",col.lab="coral4",pch=17)
5 > dev.off()

The result is presented on the figure 5.9.
An important aspect of R’s use of the col argument is the notion of vector recy-

cling. R expects the col argument to have the same length as the number of things its
plotting (in this case the number of points). Of course, these colours are not substantively
meaningful. Our data are not organized in an alternating fashion. An example of two
alternating dot colours we can see on figure 5.10. Setting the colours is achieved by the
source code:

1 >par(bg="beige")
2 > plot(sort(x),y[order(x)],pch=17,type="b",col=c("red","blue"))
3 > dev.off()

We can also produce “rainbows” of colour. For example, we could use the
rainbow() function to get a rainbow of five different colors and use it on our plot. Let
us try the source code like this:

1 >par(bg="grey")
2 plot(sort(x),y[order(x)],pch=17,type="b",col=rainbow(5))
3 > dev.off()

85



26 28 30 32 34

50
0

52
0

54
0

56
0

58
0

Main title

sort(x)

y[
or

de
r(

x)
]

Figure 5.8: Scatter plot to the example 5.1.1
with more colour options.
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Figure 5.9: Scatter plot to the example 5.1.1
with plot colour options and backckgound
set by par() function.

We get the result that is illustrated in figure 5.11. The rainbow() takes additional
arguments, such as start and end that specify where on the rainbow (as measured from
0 to 1) the colours should come from. So, specifying low values for start and end will
make a red/yellow plot, middling values will produce a green/blue plot, and high values
will produce a blue/purple plot.

5.1.4 Titles and subtitles
Base R plotting functions come with an argument named main that allows adding a title
to the plot. One can also add a subtitle, that will be positioned under the plot making use
of the sub argument. Using these arguments we can see on graphs in figures 5.8 and 5.9.

Alternative way, how to add the title and subtitle to the graph is using the function
title(). The difference between using this function instead of the arguments is that the
arguments passed to the title() function only affect the texts we are adding. In addi-
tion, we can customize every single texts using the title function several times. Managing
the title and subtitle is illustrated in figure 5.12. How we can see from the source code,
after plotting the graph, we add the main title and later the subtitle.

1 > par(bg="beige")
2 > plot(sort(x),y[order(x)],pch=17,type="b",col=rainbow(4))
3 > title(main="Icecream␣sales",col.main="red")
4 > title(sub="Temperature",col.sub="blue",adj=1,line=2)
5 > dev.off()

5.1.5 Adding text into the plot

We can add some texts into the plotted graph using the functions text() and mtext().
The difference is, that function text() places the given text on any position in the plot-
ting area while the mtext() function places the text into the margins.
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Figure 5.10: Scatter plot to the exam-
ple 5.1.1 with col option set as a vector.

26 28 30 32 34

50
0

52
0

54
0

56
0

58
0

sort(x)

y[
or

de
r(

x)
]

Figure 5.11: Scatter plot to the exam-
ple 5.1.1 with plot option col set as
rainbow() function.
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Figure 5.12: Scatter plot to the exam-
ple 5.1.1 with main title and subtitle set by
title() function.
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Figure 5.13: Scatter plot to the exam-
ple 5.1.1 with text labels placed in graph
by text() function.
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Figure 5.15: Scatter plot to the exam-
ple 5.1.1 with customized axes x and y.

The function text() has two additional arguments:

• location defines the x and y coordinates, where the text will be placed. The
coordinates must be submitted as the first two arguments of the function.

• pos defines the position according to the actual place, 1=bottom, 2=left, 3=top
and 4=right. Defining position as locator(1) enables placing the text using the
mouse.

Of course, we can also use the common arguments for plots like col, font etc. The
location for the texts can be submitted as a vector to place the text on more than one
position. The length off the x and y vector should be the same, otherwise the shorter
vector is recycled. Placing the labels in the graph demonstrates the source code:

1 > par(bg="beige")
2 > plot(sort(x),y[order(x)],pch=17,type="b",col=30)
3 > title(main="Icecream␣sales",col.main="red")
4 > title(sub="Temperature",col.sub="blue",adj=1,line=2)
5 > text(c(28,32),c(560,500),c("Text1","Text2"),pos=1,col="red")

The resulting plot we see on the figure 5.13.
Similarly, we can add the labels into the margins of the graph using the function

mtext(). As well this function has two additional arguments:

• side defines the the side of the plot area, where we put the text label, 1=bottom,
2=left, 3=top and 4=right.

• line defines the line number, where the label will be placed. Let us note the lines
are numbered starting from 0.

Figure 5.14 illustrates the scatter plot with axis descriptions set by mtext() function
in the margins of the plotting area. Here is the corresponding source code:
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1 > par(bg="beige")
2 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,xlab="",ylab="")
3 > mtext("Temperature",side=1,line=2,adj=1)
4 > mtext("Sales",side=2,line=2)

5.1.6 Axes customization

The default axis labels depend on the function we are using, e.g. plot() function will
use the names of the input data. The default axes are pictured as the plot box with ticks
marks on the down and right sides. In this subsection we will illustrate the possibilities
how to customize the axes appearance.

In order to remove the plot box we set the option axes=FALSE inside the plotting
function. New axes we can add using the axes() function. Argument of the axis()
function defines the side of the plot, where the axis will be added. As usually, the numbers
define the sides 1=bottom, 2=left, 3=top and 4=right. An example if the graph with user
defined axes we see in figure 5.15. And the source code that produce it:

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,axes=FALSE)
2 > axis(1)
3 > axis(2)

If necessary, we can add the box again using the function box(). It differs from the
default plot box by tick marks, that are visible as well on the top and right side of the
box.

Another customization is changing the axes colours. We can do it by setting the
aptional arguments of the axis() function:

• col defines the axes line colour,
• col.ticks defines the ticks colour,
• col.axis defines the labels colour.

As an example of the axes colours customization we can show the source code:

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,axes=FALSE)
2 > axis(1,col="blue",col.ticks="red",col.axis=555)
3 > axis(2,col="deepskyblue2",col.ticks=444,col.axis="red")

The result we see in figure 5.16. As well the tick marks can be customized in different
ways. We are able to:

• set the number of the tick marks with specified the start end end values,
• modify the length and orientation of the tick marks,
• rotate the tick marks labels,
• custom the tick mark labels,
• remove tick marks,
• add the minor ticks using the Hmisc .

Optional arguments xaxp and yaxp allow customizing the positions of the tick
marks on the x-axis and y-axis respectively. Their valueswe set as vectors c(start,end,
regions), where the values start and end define the start and end value on each axis,
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Figure 5.16: Scatter plot to the exam-
ple 5.1.1 with customized axes colours.
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Figure 5.17: Scatter plot to the exam-
ple 5.1.1 with customized axes x and y.

and the value of regions defines the number of regions to divide the axis. Running the
source code:

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,axes=FALSE)
2 > axis(1,col="blue",col.ticks="red",col.axis=555,xaxp=c(0,8,8))
3 > axis(2,col="blue",col.ticks="red",col.axis=555,yaxp=c(490,580,9))

we get the plot, which is presented in firgure 5.17.
The argument tck allows to modify the length and orientation of the tick marks.

Its positive value sets the marks inside the plotting area while the negative values define
the marks outside from the plotting area. The greater the absolute value, the longer the
ticks. the default value is tck=-0.05.

It is possible to rotate the tick mark labels in several ways. The rotation is enabled
using thelas argument that can take one of four values:

• las=0 the labels are parallel to axis (default),
• las=1 all labels are horizontal,
• las=2 the labels are perpendicular to axis,
• las=3 all labels are vertical.

We can demonstrate the modification of the tick marks by the following code:

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,axes=FALSE)
2 > axis(1,col="blue",xaxp=c(26,34,8),tck=0.02,las=3)
3 > axis(2,col="blue",yaxp=c(490,580,9),tck=0.02,las=2)

It produces the plot presented in figure 5.18. Let us note, we can remove the tick mark
by setting the arguments xaxt="n" for the x-axis or yaxt="n" for the y-axis.

The labels of the tick marks can be changed using the argument labels of the
axis() function. In order to place the labels correctly, we have to set their positions by
at argument, how illustrates the source code.
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Figure 5.19: Scatter plot to the exam-
ple 5.1.1 with user defined tick marks la-
bels.

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30,axes=FALSE)
2 > axis(1,col="blue",at=seq(round(min(x)),round(max(x)),by=1),
3 labels=0:8)
4 > axis(2,col="blue",yaxp=c(490,580,9),tck=0.02,las=2)

Graph with labels set by user we see in the figure 5.19. We can also set texts instead of
numbers to the tick marks. We attain this effect defining the argument labels as the
vector of the text strings but its length must correspond to the number of the ticks.

It is possible to add minor ticks to the axes with the minor.tick function of the Hmisc
library. The function will allow you to specify the tick density, the size and addition
arguments to each axis. It is illustrated in the figure 5.20 that we get using the source
code:

1 > plot(sort(x),y[order(x)],pch=17,type="b",col=30)
2 > minor.tick(nx = 2, ny = 2,tick.ratio = 0.5)

Further possible customizations of the axes are axis limits and scaling. The limits
for the axis we can define using the optional arguments xlim and ylim for x-axis and
y-axis respectively. The limits are to be submitted as vectors in the form c(start,end).
We can also transform the axes into the logarithmic scale by setting the argument log to
be equal to axis that we plan to scale. So log="x" sets the logarithmic scale to the x-axis,
log="y" sets the logaritmic scale to the y-axis and log="xy" transforms both axis into
the logarithmic scale.

Finally let us illustrate the possibility to set two dual axes. For example let us sup-
pose, we want to plot in the same graph two characteristics of the patients’ health con-
dition, the temperature and the blood pressure. We have data of 100 patients stored
in variables y and z, while the variable x contains the sequence of the patient identi-
fiers, numbers from 1 to 100. At first we modify the margins of the plotting area using
par(mar=c(3,4,2,4)). Then we plot the scatter plot of temperatures. Important step
is setting the new plot by par(new=TRUE). Now we are ready to plot the second dataset
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Figure 5.21: Scatter plot with dual axes for
the temperature (left) and blood pressure
(right).

in blue colour, with no boxes and no axes. The dual y-axis is drawn using the axis(4)
function on the right-hand side of the graph. Its description we add using the mtext().
The result we see on the figure 5.21. And here is the complete source code for plotting
the graph with dual axes.

1 par(mar = c(3, 4, 2, 4))
2 plot(x, y, pch = 19, ylab = "Temperature")
3 par(new=TRUE)
4 plot(x, z, col = 4, pch = 19,
5 axes = FALSE, # No axes
6 bty = "n", # No box
7 xlab = "", ylab = "")
8 axis(4)
9 mtext("Blood␣preasure", side = 4, line = 3, col = 4)

5.1.7 Plotting the curves
One of the many handy functions in R is curve(). It is a neat little function that provides
mathematical plotting, e.g., to plot functions. The curve() function takes, as its first
argument, an R expression. That expression should be a mathematical function in terms
of x. For example, if we wanted to plot the parabola 𝑦 = 𝑥2, we would simply type:

curve(x^2)

We get the graph of the continuous function how depicted in figure 5.22.
One can also specify an optional add parameter to indicate whether to draw the

curve on a new plotting device or add to a previous plot. For example, if we wanted to
overlay the function 𝑦 = √𝑥 on top of 𝑦 = 𝑥2 we could type:

curve(x^2)
curve(sqrt(x),add=TRUE)
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Figure 5.22: Continuous curve 𝑦 = 𝑥2 ob-
tained using the curve function.
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Figure 5.23: Two curves plotted in the
same plotting area setting the parameter
add=TRUE.

So we get the graph that contains two curves, as illustrated in figure 5.23.
Using the curve() function is not restricted to use it itself either. One can plot some

data and then use curve() to draw any line on top of it. We illustrate it in figure 5.24
that we obtain using the following source code:

1 set.seed(1)
2 x <- rnorm(100)
3 y <- x^2 + rnorm(100)
4 plot(y ~ x)
5 curve(x^2,add=TRUE)

Similarly like the plot() function, curve() accepts optional graphical parameters.
So we can redraw the graph in the figure 5.24, with some colouring and points shape
modification. If we submit the source code:

1 set.seed(1)
2 x <- rnorm(100)
3 y <- x^2 + rnorm(100)
4 plot(y ~ x,col="blue",pch=17)
5 curve(x^2,add=TRUE,col="red")

we get the result that we see in figure 5.25.
We could also call these in the opposite order, but such situation we have to replace

the plot() function by points(). so, the corresponding source looks like this:

1 set.seed(1)
2 x <- rnorm(100)
3 y <- x^2 + rnorm(100)
4 curve(x^2,add=TRUE,col="red")
5 points(y ~ x,col="blue",pch=17)
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Figure 5.24: Combination the plot and
curve functions in the same graph.

−2 −1 0 1 2

−
2

0
2

4
6

x

y

Figure 5.25: The plot and curve func-
tions modified by optional arguments.

5.1.8 Adding a legend
The function legend() enables adding a legend to the plots in R. This function has more
arguments, that allowmanaging the position and outlook of the legend. Let us note some
of them:

• x,y position in the plotting area defined by coordinates in the graph,
• legend vector of strings for description in the legend,
• col vector of colours used in the graph„
• pch vector of the mark shapes used in the graph,
• lty vector of the line types used in the graph,
• ncol number of columns used in the legend, default value is one column.

We will use the following user defined function that plots the graphs of the gonio-
metric functions sin 𝑥 and cos 𝑥 in one graph. In the resulting plot we will illustrate
adding the legend to the graph and working with the arguments of the legend() func-
tion. The user function gonplot() is given by the source code:

1 gonplot <- function() {
2 curve(sin(x),xlim=c(-10,10),col="red",lwd=2,type="l",
3 ylab="sin␣x",xlab="",ylim=c(-1,2))
4 curve(cos(x),xlim=c(-10,10),col="blue",lwd=2,type="l",lty=2,
5 ylab="sin␣x",xlab="",add=TRUE)
6 }

As the first option we introduce the position of the legend. The position argu-
ment x can be set to one of the values top, topleft, topright, bottom, bottomleft,
bottomright, left, right or center. This scenario does not require to set the argu-
ment y as the legend position is clearly defined by word.

The text of the legend is then set with legend argument and the line type, width
and colour with lty, lwd and col arguments, respectively. using the source
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Figure 5.26: Placing the legend in top right
corner of the graph.
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Figure 5.27: Placing the legend in top right
corner of the graph with inset=0.05.

1 gonplot()
2 legend(x = "topright", # Position
3 legend = c("sin␣x", "cos␣x"), # Legend texts
4 lty = c(1, 2), # Line types
5 col = c("red", "blue"), # Line colors
6 lwd = 2)

we obtain the plot in figure 5.26. Moreover, setting the argument inset,we can state the
distance from the margin as a fraction of the plot region. In figure 5.27 we see th eplot
with legend, where we set argument inset=0.05.

5.1.9 Multiple graphs

Sometimes we need to put two or more graphs in a single plot. We can achieve it by
setting some graphical parameters using the par() function. The number of required
subplots we specify by setting the mfrow parameter. This parameter has a vector of form
c(row, col)which divides the given plot into array of subplots that contains row rows
and col columns. For example, if we need to plot two graphs side by side, we would
have row=1 and col=2.

For example we can place the plots from figures 5.24 and 5.25 in one plotting area
divided in two columns. We apply the code:

1 par(mfrow=c(1,2))
2 set.seed(1)
3 x <- rnorm(100)
4 y <- x^2 + rnorm(100)
5 plot(y ~ x)
6 curve(x^2,add=TRUE)
7 set.seed(1)
8 x <- rnorm(100)
9 y <- x^2 + rnorm(100)

10 plot(y ~ x,col="blue",pch=17)
11 curve(x^2,add=TRUE,col="red")
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Figure 5.28: Two plots in one plotting area with two columns.

The result we see in figure 5.28.

5.2 Bar graphs
Bar graphs is a plot that summarizes categorical data. In its simplest form it summarizes
one categorical variable by the numbers of observations in each category. Bar graph
presents categorical data with rectangular bars with heights or lengths proportional to
the values that they represent. The bars can be plotted vertically or horizontally.

To produce the bar graphs, R uses the function barplot(). The basic syntax to
create a bar-chart in R is:

barplot(H,xlab,ylab,title, names.arg,col)

The parameters used in the function are as follows:

• H is a vector or matrix containing numeric values used in bar chart,
• xlabis the label for x axis,
• ylabis the label for y axis,
• title is the title of the bar char,
• names.arg is a vector of names appearing under each bar,
• col is used to give colors to the bars in the graph.

For example, let us suppose the vector x contains the daily sales of some products.
The sales volumes can be graphically presented in the form of the bar chart. The simplest
form of the bar plot we see in figure 5.29. The corresponding source code is very simple:

1 x<-c(2000,2400,1400,2600)
2 barplot(x)

For a horizontal bar chart, which is illustrated in figure 5.30 we set the argument horiz
to T. The source code then looks like this:
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Figure 5.29: The bar chart of the daily
sales.
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Figure 5.30: Horizontal bar chart of daily
sales.

1 x<-c(2000,2400,1400,2600)
2 barplot(x,horiz=T)

Similarly like in the case of the plot() function, we can further modify the out-
look of the resulting bar chart. In the source code below, we at first define the names
of the fruits sold and we enter them in the goods vector. We use these names as the
names.arg parameter of the bar plot to assign these names to the columns. Further we
define the values of the parameters xlab and ylab for the axes names, col and border
for colouring the bars and main to define the title of the graph.

1 goods<-c("orange","banana","apple","plum")
2 barplot(x,names.arg=goods,xlab="Fruit",ylab="Sales",col="cyan",
3 main="Monthly␣sale",border="black")

When we execute above code, it produces the graph shown in figure 5.31. We can
further modify the bars to have different colours for single fruits. To get the result shown
in figure 5.32, we define the vector colors that we use as value of the argument col.

1 colours<-c("orange","yellow","red","blue")
2 barplot(x,names.arg=goods,xlab="Fruit",ylab="Sales",col=colours,
3 main="Monthly␣sale",border="black")

In addition, we can create bar chart with groups of bars and stacks in each bar by
using a matrix as input values. We illustrate it by modifying the previous source code.
We extend the sales period for more months, and present graphically the sales volumes.
We can see the graph in figure 5.33. The source code that produces this graph follows
below. let us note adding the legend using the legend() function, similarly like in the
scatter plots.

1 months<-c("Jan","Feb","Mar","Apr")
2 x<-matrix(c(2000,2400,1400,2600,1800,2200,1600,2400,2100,2300,1500,
3 2400,2400,1800,1200,2200),nrow=4,ncol=4)
4 barplot(x, main = "Sale␣volumes", names.arg = months, xlab = "Month",
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Figure 5.31: The bar chart of the daily sales
with modified parameters.
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Figure 5.32: Bar chart of daily sales with
different bar colours.

5 ylab = "Sales", col = colours, ylim=c(0,11000))
6 legend("topright", goods, fill = colours,ncol=2)

The same information we can present alternatively by the grouped bar chart as
shown in figure 5.34. In the source code we add the argument beside=TRUE in the
barplot() function. So the corresponding line in the source is

barplot(x,beside = TRUE,main="Sale␣volumes", col = colours,
names.arg=months, xlab = "Month", ylab = "Sales",ylim=c(0,3000))

Other lines remain unchanged. Pay attention to defining the ylim arguments in both
graphs. Extending the limits for the vertical axis assures sufficient space for adding the
legend in the top right corner.

Besides filling the bars by colour, we can fill them by textures, how it is shown
in figure 5.35. We can change the density of the lines setting the density argument
whose value is vector with the length equal to the number of bars. Similarly, setting the
argument angle as a vector of the length that equals to the number of bars we can state
the angle of the filling lines. In order to create the graph in figure 5.35, we return to the
vector value x, so the source code takes the form:

1 x<-c(2000,2400,1400,2600)
2 barplot(x,density=c(5,10,20,30), angle=c(0,30,60,90),col="blue",
3 names.arg=goods,main="Sale␣volumes",xlab="Fruit",ylab="Sales")

If we want to use the for example crossed lines textures it is necessary to plot the bar
chart twice, with different angles. As well adding the legend has to be made in two steps,
with different angles set in user defined variables angle1 and angle2. We see it in the
source code below. We returned in this illustration to the grouped bar chart, therefore
we entered the variable x as matrix. Executing this code, we obtain the graph shown in
figure 5.36. We illustrate here as well changing the colours of the textures.
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1 angle1<-c(0,30,60,90)
2 angle2<-c(90,120,150,0)
3 colours<-c("orange","yellow","red","blue")
4 months<-c("Jan","Feb","Mar","Apr")
5 x<-matrix(c(2000,2400,1400,2600,1800,2200,1600,2400,2100,2300,1500,
6 2400,2400,1800,1200,2200),nrow=4,ncol=4)
7 barplot(x,density=c(10,15,20,25), angle=angle1,beside = TRUE,
8 main="Sale␣volumes", col = colours,names.arg=months, xlab = "Month",
9 ylab = "Sales",ylim=c(0,3000))

10 barplot(x,density=c(10,15,20,25),angle=angle2,beside=TRUE,
11 col = colours,add=TRUE)
12 legend("topright", goods, ncol=2, fill=colours, angle=angle1,
13 density=c(10,15,20,25))
14 legend("topright", goods, ncol=2, fill=colours, angle=angle2,
15 density=c(10,15,20,25))

Further extension of the filling possibilities brings the package patternplot. It
can fill pie charts, ring charts, bar charts and box plots with colours or textures or any
external images in png or jpeg formats.

Sometimes we have to plot the count of each item as bar plots from categorical data.
For example, let us suppose our data, including some players shooting statistics are kept
in the structure of data frame players. We create the data set by commands:

1 playerID<-c(1,2,3,4,5,6,7,8,9,10)
2 position<-c("forward","guard","forward","center","guard","center",
3 "forward","guard","forward","forward")
4 attempted<-c(12,6,10,15,12,8,10,9,14,12)
5 made<-c(7,4,6,12,8,3,7,4,9,8)
6 players<-data.frame(playerID,position,attempted,made)

Simply doing barplot(players$position) will not give us the required plot. It
will answer by error announcement as it expects the numerical vector or matrix on the
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Figure 5.33: The stacked bar chart of the
monthly sales.
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Figure 5.34: Grouped bar chart of daily
sales.
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Figure 5.35: The bar chart of the monthly
sales with different textures.
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Figure 5.36: The bar chart of the monthly
sales with combined textures.

entry. But we want to know the number of players on each position. This count can be
quickly found using the table() function, as shown below.

1 barplot(table(players$position),
2 main="Players␣positions",
3 xlab="Position",
4 ylab="Count",
5 border="red",
6 col="blue",
7 density=10)

Now plotting this data will give our required bar plot. The result is shown on figure 5.37.
As well when working with data frames, we can make multiple comparisons in a

bar plot. In the example below, we have a matrix of 3 vectors, each representing a set of
5 data points. We compare the 3 sets using bar plots. The three vectors represent three
basketball players. In each vector, the 5 numbers represent their scoring made in 5 games
of the tournament. See the source code here and the figure 5.38.

1 col1 <- c(8,10,6,12,15)
2 col2 <- c(10,5,9,9,12)
3 col3 <- c(6,10,8,11,13)
4 data <- data.frame(col1,col2,col3)
5 names(data) <- c("player-1","player-2","player-3")
6 barplot(as.matrix(data), main="Tournament -1", ylab="Points␣gained",
7 beside=TRUE,col=rainbow(5))
8 legend("topleft",c("game1","game2","game3","game4","game5"),cex=1.0,
9 bty="n",fill=rainbow(5))

5.3 Histograms
A histogram is an approximate representation of the distribution of numerical data. His-
tograms give a rough sense of the density of the underlying distribution of the data, and
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Figure 5.38: The bar of the three players
scorings in five games.

often for density estimation: estimating the probability density function of the underly-
ing variable. They represent the frequencies of values of a variable bucketed into ranges.
Histogram is similar to bar chat but the difference is it groups the values into continuous
ranges. Each bar in histogram represents the height of the number of values present in
that range.

Histogram can be created using the hist() function in R programming language.
This function takes in a vector of values for which the histogram is plotted. The basic
syntax for creating a histogram using R is:

hist(data,main,xlab,xlim,ylim,breaks,col,border)

The meaning if the arguments is as follows:

• data is a vector containing numeric values used in histogram,
• main indicates title of the chart,
• col is used to set colour of the bars,
• border is used to set border colour of each bar,
• xlab is used to give description of x-axis,
• xlim is used to specify the range of values on the x-axis,
• ylim is used to specify the range of values on the y-axis,
• breaks is used to mention the width of each bar.

We can illustrate plotting the histograms on the case of rolling the dice. Let us
suppose, we will roll two dice for 10 000 times and we are interested in the sum of the
points thrown. We simulate it using the source code that follows:

1 dice1<-sample(1:6,replace=T,10000)
2 dice2<-sample(1:6,replace=T,10000)
3 c<-dice1+dice2
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Figure 5.39: The histogram of the points
gained when rolling 2 dice.
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Figure 5.40: The histogram of the scores of
rolling 2 dice with the density of normal
distribution.

Vector c then contains the scores obtained on both dice. Now we can plot the histogram
of the scores using the hist() function:

1 hist(c,breaks=1.5:12.5, main="Rolling␣2␣dice",xlab="two␣dice",
2 ylab="Frequency")

Let us note, that the resulting scores are integers from 2 to 12, we set the breaks of the
histogram as breaks=1.5:12:5. So we have covered all possible values by bars of the
histogram. The result is show on figure 5.39.

The Central limit theorem known from the probability theory establishes that, in
many situations, when independent random variables are added, their properly normal-
ized sum tends toward a normal distribution (informally a bell curve) even if the original
variables themselves are not normally distributed. This can be documented in the his-
togram by plotting the density curve of the normal distribution in the same pot as the
histogram. In order to do so, we extend the source code into the form:

1 hist(c,breaks=1.5:12.5, main="Rolling␣2␣dice",xlab="two␣dice",
2 ylab="Frequency")
3 curve(dnorm(x,mean(c),sd(c))*10000,col="red",add=T)

In figure 5.40 we see the result, where the bell shaped graph of the normal density is
plotted by the red colour. Let us note the multiplying the values of the dnorm() by
10 000, what corresponds to the number of the rolls repeating.

5.4 Pie graphs
A pie chart is a plot for a single categorical variable and it is an alternative to bar chart.
A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices
to illustrate numerical proportion. In a pie chart, the arc length of each slice (and con-
sequently its central angle and area), is proportional to the quantity it represents. Pie
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charts are not recommended in the R documentation, and their features are somewhat
limited. The authors recommend bar or dot plots over pie charts because people are able
to judge length more accurately than volume.

In R the pie chart is created using the pie() function which takes positive numbers
as a vector input. The additional parameters are used to control labels, colours, title etc.
The basic syntax for creating a pie-chart using the R is:

pie(data, labels, radius, main, col, clockwise)

The meaning if the arguments is as follows:

• data is a vector containing the numeric values used in the pie chart,
• labels is used to give description to the slices,
• radius indicates the radius of the circle of the pie chart, (value between −1 and
+1),

• main indicates the title of the chart,
• col indicates the colour palette,
• clockwise is a logical value indicating if the slices are drawn clockwise or anti
clockwise.

Let us suppose, we want to represent the shares of monthly expenses of the house-
hold by pie chart. We take in account the following expenses categories: housing, foods,
clothing, entertainment and other. The expenses in the single categories and their de-
scriptions we submit as vectors. These values we use as parameters of the pie chart, how
illustrates the following source code.

1 data<-c(200,300,100,80,150)
2 labels<-c("housing","food","clothing","entertainment","other")
3 pie(data,labels,main="Monthly␣expenses")

The resulting pie chart is shown in figure 5.41. We can further modify this graph, for
example by changing the colours and adding the corresponding numbers to the descrip-
tions. So, at first we have to prepare new descriptions in the graph that we save in
the variable descriptions. To change the colours in the graph we apply the function
rainbow(), which defines the colour palette. Its arguments are:

• n the number of colours (≥ 1) to be in the palette,
• s,v the “saturation” and “value” to be used to complete the colour descriptions
• start the (corrected) hue in ⟨0; 1⟩ at which the rainbow begins,
• end the (corrected) hue in ⟨0; 1⟩ at which the rainbow ends,
• gamma the gamma correction, for each colour, (r,g,b) in RGB space (with all
values in ⟨0; 1⟩), the final colour corresponds to (𝑟 𝛾 , 𝑔𝛾 , 𝑏𝛾 ),

• alpha the alpha transparency, a number in ⟨0; 1⟩, (0means transparent and 1means
opaque).

We can use also alternative colour palettes like heat.colors(), terrain.colors(),
topo.colors() or cm.colors(). The source code is then like follows:

1 description<-paste(labels,"\n",data,sep="")
2 pie(data,description,main="Monthly␣expenses",
3 col=rainbow(length(data)))
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Figure 5.42: The pie chart of the monthly
expenses of the household with colours
customized by rainbow() function.

It produces the graph shown in figure 5.42. As further improvements, we may re-
quire descriptions with percentages and a graph display with a 3D effect. At first we
must recalculate the percentages and add the results into the descriptions. In order to get
the percentages in the integers, we apply the trunc() function. Then we can produce
the pie chart, this time with the heat.colors() palette. So we have the source code

1 description<-paste(labels,"\n",trunc(100*data/sum(data)),"%", sep="")
2 pie(data,description,main="Monthly␣expenses",
3 col=heat.colors(length(data)))

The result we present in figure 5.43, where we can observe that all percentages do not
give the sum of 100 %. It is caused by the rounding the numbers. We remove this defect
allowing more decimal digits using the round() function instead of trunc(). So we
modify the chart descriptions by changing the command in the code to:

1 description<-paste(labels,"\n",round(100*data/sum(data),digits=2),
2 "%", sep="")

The pie chart in figure 5.44 we produce by the same form of the pie() function as in
previous case. We have apply the heat.colors() palette again.

In order to get the 3D-effect in the chart, we must use the package plotrix. We
call this package by standard command library("plotrix").1 This package defines
the function pie3D() we will use to create the charts with 3D-effect.

Our source code then has the form

1 library("plotrix")
2 pie3D(data,labels=description,main="Monthly␣expenses",
3 col=rainbow(length(data)))

The function pie3D() has additional argument explode that enables plotting the
the pie sectors exploding outward from the centre. If we adapt the source code to

1If the package plotrix is not installed, we have to install it using install.packages("plotrix").
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Figure 5.44: The pie chart of the monthly
expenses of the household and colours de-
fined by heat palette and higher precision.

1 pie3D(data,labels=description,main="Monthly␣expenses",
2 col=rainbow(length(data)),explode=0.1)

we get the pie chart shown in figure 5.46. We can further customize the chart appearance
using the parameters height that states the height of the 3D pie (the default value is 0.1)
and theta that changes the viewing angle (the default angle is 𝜋/6).

An example of the 3D pie chart with customised height and viewing angle we see
in the figure 5.47. And here is the source code that produces it.

1 pie3D(data,labels=description,main="Monthly␣expenses",
2 col=terrain.colors(length(data)),height=0.2,theta=1.5,explode=0.1)

Let us note that in order to illustratemore colour paletteswe used the terrain.colors()
instead of rainbow() in this chart. Useful alternative to the pie charts is fun.plot()
defined in the plotrix packages. It allows to compare visually the pie sectors of the
chart. We can customize the fun plot setting the additional arguments:

• max.span the angle of the maximal sector in radians. The default is to scale data
so that it sums to 2𝜋 .

• ticks the number of ticks that would appear if the sectors were on a pie chart.
Default is no ticks.

Illustration of the fun plot we see on the figure 5.48 and here is the source code that
creates this fun plot as an outcome.

1 fan.plot(data,labels=description,main="Monthly␣expenses",
2 col=rainbow(length(data)),max.span=pi,ticks=max(data))

How we can see from the chart in figure 5.48, the disadvantage of the fun plot is a
large white space above the chart. We can remove this space by setting the new graphical
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Figure 5.45: The pie chart of the monthly
expenses of the household with 3D effect.
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Figure 5.46: The pie chart of the monthly
expenses of the household with 3D effect
and exploded parts.

device with user defined height andwidth. A new graphical windowwe open by function
new.dev(). The required size of the windowwe define in arguments height and width.
Themeasure units we then submit as the unit argument. In our case we can set graphical
window by command:

dev.new(width=10,height=5,unit="cm")

The fan chart then completely fills whole plotting area. The function dev.new() allows
to openmore graphical devices. The currently active graphical device we recognize using
the function dev.cur() and we can switch among the devices by function dev.set()
whose argument is an integer associated with the graphics device we want to switch to.

5.5 Box plots
In descriptive statistics, a box plot or boxplot (also known as box and whisker plot) is
a type of chart often used in explanatory data analysis. Box plots visually show the
distribution of numerical data and skewness through displaying the data quartiles (or
percentiles) and averages. It is also useful in comparing the distribution of data across
data sets by drawing boxplots for each of them.

A boxplot is constructed of two parts, a box and a set of whiskers shown in fig-
ure 5.49. The box is drawn from the lower quartile to the upper quartile with a horizontal
line drawn inside the box to denote the median. However, the whiskers can represent
several alternative values, among the observed data:

• the minimum and maximum of all of the data,
• one standard deviation above and below the mean of the data,
• the 9-th percentile and the 91-st percentile,
• the 2-nd percentile and the 98-th percentile.
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Figure 5.48: The fan plot of the monthly
expenses.

Any data not included between the whiskers should be plotted as an outlier with a dot,
small circle, or star, but occasionally this is not done.

Boxplots are created in R by using the boxplot() function. The basic syntax to
create a boxplot in R is:

boxplot(x, data, notch, varwidth, names, main)

The meaning of the parameters is as follows:

• x is a vector or a formula,
• data is the data frame.
• notch is a logical value. Set as TRUE to draw a notch.
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Figure 5.49: Scheme of the box plot construction.
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Figure 5.50: The boxplot comparing the
points gained in basketball game by player
position.
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Figure 5.51: The boxplot comparing the
points gained in basketball game by player
position with user modified color and pro-
portional widths.

• varwidth is a logical value. Set as true to draw width of the box proportionate to
the sample size,

• names are the group labels which will be printed under each boxplot,
• main is used to give a title to the graph.

Let the statistical data from the basketball game are saved in file players.csv.
This file contains the players identification, position, and number of attempted and made
shoots. The boxplots in figure 5.50 compare the points gained by position. The corre-
sponding source code is:

1 players<-read.csv("players.csv")
2 boxplot(made~position,data=players,
3 xlab="Position",ylab="Points␣gained",
4 main="Scoring␣by␣position")

Here we read the data from the file at first, and in the second step we drew the
boxplot. Similarly like the other types of the plots, we can modify the outlook of the
plot. How illustrates the next source code, we color the plot and setting the value
varwidth=TRUE we arrange the width of the boxes to be proportional to the sample
size.

1 boxplot(made~position,data=players,
2 xlab="Position",ylab="Points␣gained",
3 main="Scoring␣by␣position",col="cyan",varwidth=TRUE)

The boxplot obtained by applying this source code we see in figure 5.51. Setting the
logical variable horizontal to TRUE we can rotate the boxes in the boxplot. Moreover,
the colors can vary from box to box, how illustrates the boxplot in figure 5.52. We extend
the arguments of the boxplot() function, how we see in the following listing.
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Figure 5.52: The horizontal boxplot com-
paring the points gained in basketball
game by player position.
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Figure 5.53: The violin plot comparing the
points gained in basketball game by player
position.

1 boxplot(made~position,data=players,
2 xlab="Position",ylab="Points␣gained",
3 main="Scoring␣by␣position",col="col=c("blue","cyan","green"),
4 varwidth=TRUE,horizontal=TRUE)

An alternative to the boxplot is the violin plot. The violin plot solves the issues
regarding displaying the underlying distribution of the observations, as these plots show
a kernel density estimate of the data. In order to construct the violin plot, we have to
input the vioplot library to the base R. This library defines the function vioplot()
that enables constructing the violin plots. Its use is analogical to the boxplot() function,
how we see in the following source code:

1 library("vioplot")
2 vioplot(made~position,data=players,
3 xlab="Position",ylab="Points␣gained"
4 ,main="Scoring␣by␣position",col=c("blue","cyan","green"))

The corresponding output we see on the figure 5.53. Herewe can observe, how shap-
ing of the boxes illustrates the density of the empirical distribution. Figure 5.54 shows,
howwe can add jittered data points to the previous violin plot. We use the stripchart()
function with logical variable add set to TRUE. The source code is then extended to the
following form:
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Figure 5.54: The violin plot comparing the
points gained in basketball game by player
position with jittered data.
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Figure 5.55: The customized violin plot
comparing the points gained in basketball
game by player position with jittered data
added.

1 vioplot(made~position,data=players,
2 xlab="Position",ylab="Points␣gained"
3 ,main="Scoring␣by␣position",col=c("blue","cyan","green"))
4 stripchart(made ~ position, data=players, vertical = TRUE,
5 method = "jitter",pch = 19,col="red", add = TRUE)

The violin plots can be further customized by the following variables:

• col that defines color of the area,
• rectCol that defines color of the rectangle,
• lineCol that defines color of the line,
• colMed that defines Pch symbol color,
• border that defines color of the border of the violin,
• pchMed that defines Pch symbol for the median,
• plotCentre that defines how will be plotted a median line (points or line).

The outlook of our violin plot can be customized by the following source code

1 vioplot(made~position,data=players,
2 xlab="Position",ylab="Points␣gained",main="Scoring␣by␣position",
3 col=c("blue","cyan","green"),
4 rectCol="purple",lineCol="white",colMed="yellow",
5 border="orange",plotCentre="line")
6 stripchart(made ~ position, data=players, vertical = TRUE,
7 method = "jitter",pch = 19,col="red", add = TRUE)

The result we see in figure 5.55.
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Figure 5.56: The Q-Q plot confirms graph-
ically normality of the sample.
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Figure 5.57: The Q-Q pot of the exponen-
tial sample against the normal theoretical
distribution.

5.6 Q-Q plots
The quantile-quantile plot (or shortly Q-Q plot), is a graphical tool to help us assess
if a set of data plausibly came from some theoretical distribution such as a normal or
exponential. For example, if we run a statistical analysis that assumes our dependent
variable is normally distributed, we can use a normal Q-Q plot to check that assumption.
It is just a visual check, not an exact proof, but it allows us to see at-a-glance if our
assumption is plausible, and if not, how the assumption is violated and what data points
contribute to the violation.

A Q-Q plot is essentially a scatterplot created by plotting two sets of quantiles
against one another. If both sets of quantiles came from the same distribution, the points
form a roughly straight line. Q-Q plots take our sample data, sort it in ascending or-
der, and then plot them against quantiles of the suggested theoretical distribution. The
number of quantiles is selected to match the size of our sample data.

In R, we have two functions to create Q-Q plots: qqnorm() and qqplot(). While
qqnorm() creates normal Q-Q plot (means the suggested theoretical distribution to be
normal), the qqplot() function allows us to create a Q-Q plot to compare two datasets.

To illustrate how does the qqnorm() function work, let us at first generate the ran-
dom sample from the normal distribution. Then we create the Q-Q plot, and in the same
picture we add the 45-degree reference straight line to check graphically the normality.
The source code we have just described is as follows. As a result we obtain the Q-Q plot
presented in figure 5.56.

1 x<-rnorm(100,mean=10,sd=1)
2 qqnorm(x)
3 qqline(x, col = "steelblue", lwd = 2)

In figure 5.57 we illustrate the situation, when the sample does not come from the
normal distribution. Using the functionrexp() we generate the exponential sample and
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Figure 5.58: The Q-Q plot confirms graph-
ically the samples come from the same dis-
tribution type.
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Figure 5.59: The Q-Q pot of the exponen-
tial sample against the normal theoretical
distribution.

later we draw the Q-Q plot against the normal distribution. the corresponding source
code is in the following listing:

1 x<-rexp(100,rate=1/10)
2 qqnorm(x)
3 qqline(x, col = "steelblue", lwd = 2)

From the graph in figure 5.57 it is clear, that the plot of the sample points against
the theoretical quantiles violates the straight line.

In order to compare, if two random samples come from the same distribution type,
we will generate two vectors x and y and then apply the function qqplot() on these
samples. So we get the plot as illustrated in figure 5.58. And here is the source code:

1 x<-rnorm(100,mean=10,sd=1)
2 y<-rnorm(100,mean=5,sd=3)
3 qqplot(x,y,main="Q-Q␣plot␣for␣two␣samples")

Unfortunately, the qqplot() function does not cooperate with the qqline() func-
tion that is joined with the qqnorm() function. Before proceeding to get the helping
straight line in the plot, let us not, that qqplot() function is equivalent with using the
plot() function combined with sort() function. So, qqplot(x,y) is equivalent to
plot(sort(x),sort(y)). To add the auxiliary straight line, we use abline() func-
tion together with the sort() function. So, the plot in figure 5.59 we obtain by submiting
the source code

1 x<-rnorm(100,mean=10,sd=1)
2 y<-rnorm(100,mean=5,sd=3)
3 qqplot(x,y,main="Q-Q␣plot␣for␣two␣samples")
4 abline(lm(sort(y) ~ sort(x)), col = "steelblue", lwd = 2)

The qqplot() function can be used to compare the sample with any theoretical
distribution. We generate the vector of the quantiles of the theoretical distribution of
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Figure 5.60: The Q-Q plot confirms graph-
ically the sample comes from the exponen-
tial distribution.
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Figure 5.61: The Q-Q pot of the exponen-
tial sample against the normal theoretical
distribution.

the same length as the given sample and then we use this vector as the second dataset
entering into the qqplot() function. Let us suppose for certainty, we have the sample
from the exponential distribution in the vector x. To compare it graphicaly with the
theoretical exponential distribution, we will generate its quantiles in vector y at first and
further we apply the qqploy() on these two vectors. So the source looks like this:

1 x<-rexp(100,rate=1/10)
2 y<-qexp(seq(0,1,by=0.01),rate=1)
3 qqplot(x,y,main="exponential␣Q-Q␣plot")
4 abline(lm(sort(y[1:100]) ~ sort(x)), col = "steelblue", lwd = 2)

As a result we get the plot illustrated in figure 5.60. The auxiliary line shows, the
sample comes from the exponential distribution. Let us note, to draw the auxiliary line
we need to take two vectors of the same length. Because our sample contains 100 values,
we take first 100 percentiles and omit the last value, that equals to ∞.

It is known from the probability theory, that by summing the exponential random
variables with the same rate parameter 𝜆 we get a new random variable, that has Er-
lang distribution with the same rate parameter and shaping parameter that equals to the
number of summands. The Erlang distribution is a special case of the Gamma distribu-
tion with whole number as the shaping parameter. We can graphically illustrate it by
Q-Q plot in figure 5.61 . At first, we generate the vector x as the sum of three exponential
variables and as the second vector ywe generate the quantiles of the Gamma distribution
the same rate parameter and shaping parameter equal to 3. The source code is like this:

1 x<-rexp(100,rate=1/10)+rexp(100,rate=1/10)+rexp(100,rate=1/10)
2 y<-qgamma(seq(0,1,by=0.01),rate=1/10,shape=3)
3 qqplot(x,y,main="Gamma␣Q-Q␣plot")
4 abline(lm(sort(y[1:100]) ~ sort(x)), col = "steelblue", lwd = 2)
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Figure 5.62: Multiple plots in one
graph combined by parameter
par(mfrow=c(2,2)).

Plot 2 Plot 4

Plot 1 Plot 3

Figure 5.63: Multiple plots in one
graph combined by parameter
par(mcol=c(2,2)).

5.7 Simple plot combination
It is quiet simple to combine plots in base R with mfrow and mfcol graphical parameters.
We just need to specify a vector that determines the number of rows and the number of
columns we plan to create. The decision of which graphical parameter we should use
depends on how do we want our plots to be arranged:

• mfrow the plots will be arranged by rows,
• mfcol the plots will be arranged by columns.

Figures 5.62 and 5.63 illustrate, how the multiple plots are arranged according the
used specification by mfrow or mcol. A simple use of two plots side by side we have
already shown in figure 5.28. Now we will illustrate, that we can place different types of
plots in the same graph.

As the fisrt step we generate the sample, in this case from the exponential distribu-
tion. Let us note, that using the set.seed() function we assure to get same result in all
repeated runs of the source code. Further we set four graphs to be placed in the picture
and arranged by rows.2 Then we gradually display the histogram in top left position, box
plot in the right top position, the scatter plot in the bottom left position and finally the
pie graph in the bottom right position. The result we see in figure 5.64.

The source code used to produce the figure 5.64 is as follows.

1 set.seed(5)
2 x <- rexp(80)
3 # Two rows, two columns
4 par(mfrow = c(2, 2))
5
6 # Plots

2If you prefer arranging by columns, replace mfrow=c(2,2) by mfcol=c(2,2).
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Figure 5.64: Combination of the histogram, boxplot, scatter plot, and pie graph of the
data in the same figure.

7 hist(x, main = "Histogram") # Top left
8 boxplot(x, main = "Box␣plot") # Top right
9 plot(x, main = "Scatter␣plot") # Bottom left

10 pie(table(round(x)), main = "Pie␣graph") # Bottom right
11
12 # Back to the original graphics device
13 par(mfrow = c(1, 1))

Frequently it can happen, we need to create the picture with more complex struc-
ture. In such situations we have to use the layout() function. This function has four
important arguments:

• mat a matrix where each value represents the location of the figures.
• widths a vector for the widths of the columns. You can also specify them in cen-
timeters with lcm() function.

• heights a vector for the height of the columns. You can also specify them in
centimeters with lcm() function.

• respect Boolean or a matrix filled with 0 and 1 of the same dimensions as mat to
indicate whether to respect relations between widths and heights or not.
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Figure 5.65: Scheme of the more com-
plex structure of the plots combination ob-
tained by the layout() function.
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Figure 5.66: Scheme of the more complex
structure of the plots combination with
one empty position.

If we are not sure, we can preview a layout making use of the layout.show()
function before adding the plots. Using the code

1 l <- layout(matrix(c(1, 2, 2, # First , second ,
2 3, 3, 4), # third and fourth plot
3 nrow = 2,
4 ncol = 3,
5 byrow = TRUE))
6 layout.show(l)

we get the result illustrated in the figure 5.65. In case we want to omit some graph in the
scheme, we put 0 on the corresponding position in the mat matrix. An example we see
in figure 5.66. The adequate source code is modified to

1 l <- layout(matrix(c(2, 0, 1, 3),
2 nrow = 2, ncol = 2,
3 byrow = TRUE),
4 widths = c(3, 1),
5 heights = c(1, 3), respect = TRUE)
6 layout.show(l)

We illustrate this method on the scatter plot accomplished with the marginals in the
form of histogram and box plot. Once we have generated the vector x in the previous
demonstrations, we run the following source code:

1 l <- layout(matrix(c(2, 0, 1, 3),
2 nrow = 2, ncol = 2,
3 byrow = TRUE),
4 widths = c(9, 3),
5 heights = c(3, 9), respect = TRUE)
6 plot(x, main = "Scatter␣plot")
7 hist(x, main = "Histogram")
8 boxplot(x, main = "Box␣plot")
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Figure 5.67: Combination of the scatter plot and corresponding histogram and boxplot
as its marginals.

The result we see in figure 5.67. This combination of plots allows also better illus-
tration of the violin plots mentioned in the previous section. We generate a sample from
bimodal distribution. Two modes are then also nicely visible on the violin plot, what
traditional boxplot does not. The combination of the histogram an corresponding violin
plot above is shown in figure 5.68.

Here is the source code, that creates the combination of the histogram and marginal
violin plot on firgure 5.68. Let us mention adjusting the range of axes setting the pa-
rameters xlim and ylim. Here it is necessary to realize that the violin plot shows the
coordinates of y, it is only oriented horizontally, therefore we set there ylim argument.
It is as well necessary to manage the margins of both plots, to set the axis in correct posi-
tions. The marginal frame of the violin plot is removed by setting bty="n" in the par()
function.

1 # Generating the bimodal data
2 n <- 10000
3 ii <- rbinom(n, 1, 0.5)
4 data<-rnorm(n, mean=130, sd=10) * ii +rnorm(n,mean=80,sd=5) * (1-ii)
5 # Setting layout of the plot
6 l <- layout(matrix(c(2, 1),
7 nrow = 2, ncol = 1,
8 byrow = TRUE),
9 widths = c(9, 3),

10 heights = c(3, 9), respect = TRUE)
11
12 # Histogram
13 hist(data, probability = TRUE, col = "grey", axes = FALSE,
14 main = "", xlab = "", ylab = "",xlim=c(50,160))
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Figure 5.68: Combination of the histogram and corresponding violin plot.

15
16 # X-axis
17 axis(1)
18
19 # Density
20 lines(density(data), lwd = 2, col = "red")
21
22 # Add violin plot
23 par(mar = c(0, 4.1, 0, 0),bty="n")
24 vioplot(data, horizontal = TRUE, yaxt = "n", axes = FALSE,
25 col = rgb(0, 1, 1, alpha = 0.15),ylim=c(50,160))
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Chapter 6 119

Basics of the statistics

In everyday life, we encounter a large number of facts collected in the form of data.
Statistics provides us with methods to organise and summarise this data and procedures
to draw conclusions based on the information contained in this data. The typical target
of a statistical investigation is some well-defined set of objects, which we refer to as the
population.

When carrying out a statistical enquiry, two situations may arise. Sometimes we
have the required information on all elements of the population. In this case, we have
a data set that we call a census. As an example, consider a periodic population cen-
sus. However, collecting information on all elements belonging to a population is very
time-consuming and costly, which frequently makes it impossible to carry out a census.
Instead of analysing the whole population, we only analyse data from a subset called a
sample.

6.1 Descriptive characteristics of the sample
In the previous chapters, we have shown an illustrative graphical interpretation of the
obtained data. However, the formal analysis requires performing some numerical calcu-
lations. We will focus on the numerical data in particular. We will discuss the approach
to categorical data at the end of the chapter.

We will suppose, that our sample is in the form of the numerical values 𝑥1, 𝑥2, … , 𝑥𝑛 .
Essential characteristics of such a set of numbers are its location (particularly the cen-
tre) and its variability. At first, we will present some location characteristics and their
computation, and later in the section, the variability characteristics.

6.1.1 Measures of location

The mean

The sample mean of the given set of numbers 𝑥1, 𝑥2, … , 𝑥𝑛 is defined by formula:

𝑥 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
𝑛 =

𝑛
∑
𝑖=1

𝑥𝑖
𝑛 . (6.1)

The mean, or the arithmetic average, given by equation (6.1) is the most famil-
iar measure of centre. In the R environment it is implemented as the mean() func-
tion and its use is very simple. On the website of the Slovak central bank https://
www.nbs.sk/en/monetary-policy/macroeconomic-databasewe can find macroe-
conomic database. We can download for example the .csv file containing the numbers

https://www.nbs.sk/en/monetary-policy/macroeconomic-database
https://www.nbs.sk/en/monetary-policy/macroeconomic-database


of new passenger cars registrations in selected time period. This file is implicitly saved
as macrostat.csv. Due to the use of comma as the decimal separator, we read the data
using the read.csv2() function. To compute the mean, we have to use as.numeric()
because cars[1,] gives the values in the list format. So to obtain the average value of
the monthly registered new passenger cars (in thousands) in years 2017-18 we can use
the code:

1 cars<-read.csv2("macrostat.csv",header=FALSE,sep=";")
2 mean(as.numeric(cars[1,]))
3 [1] 8.090125

So we see, the monthly average of the newly registered cars is 8.090 thousands.
It is often the case that the values of the statistical trait of interest are ordered in a

sequence of absolute frequencies. In this case, we modify the relation (6.1) for calculating
the sample mean to the form:

𝑥 = 𝑥1 ⋅ 𝑛1 + 𝑥2 ⋅ 𝑛2 + ⋯ + 𝑥𝑘 ⋅ 𝑛𝑘
𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘

=

𝑘
∑
𝑖=1

𝑥𝑖 ⋅ 𝑛𝑖

∑𝑘
𝑖=1 𝑛𝑖

. (6.2)

where 𝑥𝑖 ’s denote the values of the variable and 𝑛𝑖 denotes the absolute frequency of 𝑥𝑖 .
In this case, we need to define a custom function to calculate the mean value. As

input values, we will specify two vectors. The first vector contains the values that the
random variable takes, and the second is a vector of their multiplicities. Before per-
forming the calculation according to the relation (6.2), it is necessary to verify that both
vectors have the same length. The corresponding function mean2() can then be defined
as follows:

1 mean2<-function(arg1,arg2){
2 if (length(arg1)==length(arg2)){
3 s<-sum(arg1*arg2)/sum(arg2)
4 }
5 else{s<-c("Arguments␣are␣not␣of␣equal␣length")}
6 return(s)
7 }

The use of the just defined function mean2() we can illustrate on the variable that
takes the values from the set {1, 2, … , 10}. We can generate the absolute frequencies of
these values using the Poisson distribution. The feasible values are stored in the vector
a and the absolute frequencies in the vector b. See the listing.

1 a<-c(1,2,3,4,5,6,7,8,9,10)
2 b<-rpois(10,20)
3 mean2(a,b)
4 5.38613861386139

Another alternative is to sort the measured values of the variable into class intervals.
It means structuring the data into a table containing the class intervals and their absolute
frequencies. Assuming a uniform distribution of values within each interval, we choose
the midpoints of these intervals as their representatives.
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The median

We can characterise median as the middle value if the observed values are sorted from
smallest to largest. Formally we can say, that variable value is larger then median equals
to the probability, that its value is less then median and consequently this probability
equals to 1/2. Having a sample of numbers 𝑥1, 𝑥2, … , 𝑥𝑛 the median 𝑥̃ is given as

𝑥̃ = {
( 𝑛+12 ) -th ordered value 𝑛 is odd
1
2 ((

𝑛
2) -th + ( 𝑛2) -th ordered value) 𝑛 is even

(6.3)

Let us note, this measure is more robust then mean. The robustness of the value
means it is not strongly influenced by extremal values of the variable. In the R envi-
ronment is implemented the function median(). So we can simply find the median of
monthly newly registered passenger cars using the code

1 > median(as.numeric(cars[1,]))
2 [1] 8.2425

Quantiles

Themedian, defined in the previous subsection, divides the sample into two equally likely
subsets. To refine the measure of location, we can divide the sample into more then two
equally likely parts. If we divide the data for example into four parts, we obtain quartiles.
Similarly, dividing the sample into the one hundred parts, we obtain percentiles.

Generally, we can divide the sample into any number 𝑞 of equally likely parts. These
values are called 𝑞-quantiles, and the 𝑘-th 𝑞-quantile for the random variable 𝑋 is defined
by formula

ℙ (𝑋 < 𝑥) ≤ 𝑘
𝑞 . (6.4)

To find the quantiles, in R is implemented the quantile() function. Without any
optional parameters it gets the minimum of the sample, the first quartile, median, the
third quartile and the maximal value of the sample. We can illustrate it on the COVID-19
data, downloaded from the official website of the Slovak government https://korona.
gov.sk. In the following source code we download the data from the distanced source
at first, and then we compute the quartiles of the daily increase:

1 data<-read.csv("https://mapa.covid.chat/export/csv",header=T,sep=";")
2 > quantile(data[,4])
3 0% 25% 50% 75% 100%
4 0 30 232 1737 15278

We can also set some optional arguments of the quantile() function:

• probs numeric vector of probabilities with values in ⟨0, 1⟩, that defines the proba-
bility levels for the required quantiles,

• na.rm logical value, if true, any NA and NaN’s are removed from data before the
quantiles are computed,

• names logical value, if true, the result has a names attribute. Set to FALSE for
speed-up with many probs.
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To find the deciles of the daily increases, we use the quantile() function in the
form:

1 > quantile(data[,4],probs=seq(0,1,by=0.1))
2 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
3 0 6 20 43 91 232 642 1293 2034 3041 15278

6.1.2 Measures of variability
The random samples are frequently characterised by considerable variability of the mea-
sured data. Therefore, the fact that we know the mean value, the most frequent value
and the median value are not sufficient to describe the statistical population. There are
a number of different measures that express the variability of the values in the sample.

The variation range

The variation range, or shortly only range, is s one of the most basic and the simplest
measures of variation. It depends only on two values in the sample – the greatest and
the smallest values. It is defined as the difference

𝑅 = max{𝑥1, … , 𝑥𝑛} − min{𝑥1, … , 𝑥𝑛} (6.5)

The shortcoming of this measure is that it does not use all the measured values. However,
it is well applicable for a quick orientation on the extent of variability of a given sample.

The range() function determines the range of variation in the R language environ-
ment. Its outputs are two values – the greatest and the smallest value in the sample. If
we want to express the variation range as a single value by definition (6.5), we use the
max() and min() functions. We can illustrate this in the following source code.

1 > x<-c(5,10,12,4,16,8,9)
2 > range(x)
3 [1] 4 16
4 > R<-max(x)-min(x)
5 > R
6 [1] 12
7 >

Interquartile range

The interquartile range is a measure of statistical dispersion. It is defined as the difference
between the upper and lower quartiles of the data. Assigning these quartiles as 𝑄3 and
𝑄1, we can express the interquartile range 𝐼𝑄𝑅 as

𝐼𝑄𝑅 = 𝑄3 − 𝑄1. (6.6)

In order to compute the interquartile range, here is the function IQR() is implemented
in the R language.

1 > x<-c(5,10,12,4,16,8,9)
2 > IQR(x)
3 [1] 4.5
4 >
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Mean absolute deviation

The mean absolute deviation𝑀𝐴𝐷 of a dataset is the average distance between each data
point and the mean. For the sample 𝑥1, … , 𝑥𝑛 , it is defined by formula

𝑀𝐴𝐷 = 1
𝑛

𝑛
∑
𝑖=1

|𝑥𝑖 − 𝑥| . (6.7)

In the R environment, the mad() function is implemented to calculate the mean
absolute deviation. We illustrate its use in the source code:

1 > x<-c(5,10,12,4,16,8,9)
2 > mad(x)
3 [1] 4.4478
4 >

Variance and standard deviation

Variance is the most popular and the most frequently used measure of the sample varia-
tion. If we have the sample 𝑥1, … , 𝑥𝑛 , we define the sample variation 𝑠2 by formula

𝑠2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2 . (6.8)

In the case of the data ordered in the sequence absolute frequencies 𝑛1, … , 𝑛𝑘 ,∑𝑘
𝑖=1 𝑛𝑖 = 𝑛,

of the values 𝑥1, … , 𝑥𝑘 , we modify the formula (6.8) into the form

𝑠2 = 1
𝑛

𝑘
∑
𝑖=1

𝑛𝑖 (𝑥𝑖 − 𝑥)2 . (6.9)

The standard deviation is then defined as the square root from the variance, means:

𝑠 = √𝑠2 =
√

1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2, (6.10)

or in the case of the ordered data set

𝑠 = √𝑠2 =
√

1
𝑛

𝑘
∑
𝑖=1

𝑛𝑖 (𝑥𝑖 − 𝑥)2. (6.11)

There is a simple direct relationship between standard deviation and variance. However,
the variance comes out in squares of the measurement units. The purpose of introduc-
ing a standard deviation to describe the variability of a sample is to achieve the same
measurement units as in the original dataset.

We must be careful when using the var() and sd() functions implemented in R.
This is because their results are an unbiased estimates of the variance and standard devia-
tion of the whole population.1 If we want to compute the sampling variance according to
the relation (6.8), we have to define our own function, whichwe illustrate in the following
source code.

1We mention this estimate property in the next section
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1 > variance<-function(x) sum((x-mean(x))^2)/length(x)
2 > stdev<-function(x) sqrt(variance(x))
3 > variance(x)
4 [1] 14.40816
5 > stdev(x)
6 [1] 3.795809
7 > var(x) # compare results
8 [1] 16.80952
9 > sd(x)

10 [1] 4.099942

Besides these absolute variability measures, we can define the relative variability
measures. These relative measures of variability remove the problems of comparing sets
with different values of the trait of interest. They are also functional when comparing
the variability of multiple traits measured in incompatible units. The essence of their
construction is to compare the absolutemeasure of variabilitywith the arithmetic average
of the given sample.

The Coefficient of Variation

The coefficient of variation is a statistical measure of the relative dispersion of data points
in a data series around the mean. It shows the extent of variability in relation to the mean
of the population. The coefficient of variation 𝐶𝑉 is defined as the ratio of the standard
deviation 𝑠 to the mean 𝑥

𝐶𝑉 = 𝑠
𝑥 . (6.12)

The coefficient of variation is frequently expressed as a percentage. Then the result ob-
tained by definition (6.12) has to be multiplied by 100. The coefficient of variation has
got no implementation among the function in R, but we can easily compute it using the
existing functions or define new function. Let us see the source code.

1 > cv<-function(x) variance(x)/mean(x) * 100
2 > cv(x)
3 [1] 157.5893

6.1.3 Skewness and kurtosis
Skewness and kurtosis are the measures which tell about the shape of the data distribu-
tion. These measures give us an indication of how small or large values are concentrated
in the statistical population. We are also interested in how strong the concentration of
values near the mean is.

Skewness

Skewnessmeasures the asymmetry of the distribution or data set. We define the skewness
𝛾1 as

𝛾1 =

1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)3

𝑠3 . (6.13)
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Depending on the value of 𝛾1 there exist 3 types of skewness. If 𝛾1 > 0 we speak
about positive skewness. It means that majority of the data are less than the average
value. On the other hand there are the negative skewed data, when 𝛾1 < 0 In this case
is the majority of the values in the dataset greater than the mean. Finally zero skewness
𝛾1 = 0 represents the symmetric distribution of the data.

Kurtosis

Kurtosis measures the sharpness of the peak in the data distribution.We define the kur-
tosis 𝛾2 as

𝛾2 =

1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)4

𝑠4 . (6.14)

Similarly like in the case of skewness, here are also three types of kurtosis. If 𝛾2 = 3
we speak about mesokurtic distribution. The value 𝛾2 is compared with 3, because the
kurtosis of the normal distribution equals 3. So we compare the kurtosis of the sample
with the Gaussian curve. In the case 𝛾2 < 3 is the distribution more flat than normal
distribution and we speak about platykurtic distribution. In the opposite case, when
𝛾2 > 3, the analysed distribution has a greater peak in the mean than normal distribution.
This kind of distributions is said to be leptokurtic.

To compute the skewness and kurtosis in R we need the moments package. In this
package are defined the functions skewness() and kurtosis(). let us see the source
code.

1 > library(moments)
2 > skewness(x)
3 [1] 0.3598295
4 > kurtosis(x)
5 [1] 2.252963
6 >

6.2 Parameter estimates
One of the goals of the statistical analysis is to estimate the parameters of the original
distribution from which the random selection comes. We distinguish two types of esti-
mates:

• the point estimates that provide the estimate of the exact value of the parameter,
• confidence intervals that give the intervals, that contain the real value of the pa-
rameter wit given probability (reported as the confidence level).

6.2.1 Point estimates

To estimate the value of the parameter we aim to choose the sample characteristic that
approximate the parameter Θ with the best quality. The quality of the estimator is guar-
anteed by its properties:
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• Unbiased estimate of the parameter 𝜃 is such estimate 𝑇 that equality 𝔼 (𝑇 ) = 𝜃
holds.

• Consistent estimate can be characterised by increasing accuracy with increasing
sample size. Formally we can write lim𝑛→∞ 𝑇𝑛 = Θ, where indices represent the
size of the sample used in estimation.

• Efficient estimate can be interpreted as the best possible estimate. The notion best
possible relies on the loss measured by the mean squared error of 𝑇 . It is the value
𝑀𝑆𝐸(𝑇 ) = 𝔼 ((𝑇 − Θ)2). The efficient estimate minimizes this value.

These properties influence implementation of some sample characteristics in the
R language. Let us look on the sample mean. Having the random sample 𝑋1, … , 𝑋𝑛 from
the distribution with the mean 𝜇, we can calculate:

𝔼 (𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝔼 (𝑋𝑖) =
1
𝑛 𝑛𝜇 = 𝜇.

So we have shown that the average is the unbiased estimate of the mean. Now let us look
on the sample variance. Using the identity

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2 =
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇 + 𝜇 − 𝑋)2 =
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)2 − 𝑛(𝑋 − 𝜇)2,

we get

𝔼(
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2) = 𝔼 (∑𝑛
𝑖=1(𝑋𝑖 − 𝜇)2 − 𝑛(𝑋 − 𝜇)2)

∑𝑛
𝑖=1𝔻(𝑋𝑖) − 𝑛𝔻 (𝑋)

𝑛𝜎2 − 𝑛𝜎2
𝑛 = (𝑛 − 1)𝜎2,

and therefore

𝔼 (𝑠2) = 𝔼 (1𝑛
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2) = 𝑛 − 1
𝑛 𝜎2.

So we see the sample variance is not unbiased estimate of the random variable variance.
In order to get the unbiased estimate we have to multiply the sample variance by

𝑛
𝑛−1 . So

we obtain the unbiased estimate of the variance

𝑠2𝑛−1 =
1

𝑛 − 1
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

The index 𝑛 − 1 is used to emphasize using the coefficient 1/(𝑛−1) instead of 1/𝑛. This result
explains, why the function var() is implemented differently from sample variance. It
represents the unbiased estimate of the original random variable.

In this text we introduce two methods of the point estimates constructing:

• the method of moments,
• the method of maximal likelihood.

We will suppose, we have the sample 𝑋1, … , 𝑋𝑛 from the distribution that depends
on the vector of parameters 𝜃 = (𝜃1, … , 𝜃𝑚).
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The method of moments

Let us further suppose that there exist all moments 𝜈𝑘 = 𝔼 (𝑋 𝑘𝑖 ), 𝑘 = 1, … , 𝑚. The sample

moments 𝑣𝑘 are defined as 𝑣𝑘 = 1
𝑛 ∑

𝑛
𝑖=1 𝑋 𝑘𝑖 for 𝑘 = 1, … , 𝑚. The principle of the method

of moments is the equality of the theoretical and sample moments. It means the method
of moments estimator for 𝜃1, 𝜃2, … , 𝜃𝑘 denoted by ̂𝜃1, ̂𝜃2, … , ̂𝜃𝑘 is defined as the solution (if
there is one) of the equations:

𝜈𝑘 = 𝑣𝑘 , 𝑘 = 1, … , 𝑚.
Alternatively we can use the 𝑟-th central moment defined as 𝜇𝑟 = 𝔼 ((𝑋 − 𝔼 (𝑋))𝑟 ) and
𝑟-th sample central moment 𝑚𝑟 = 1

𝑛 ∑
𝑛
𝑖=1(𝑋𝑖 − 𝑋)𝑟 .

We illustrate the method on the case of the uniform distribution wit parameters 𝑎
and 𝑏. It is known, that the moments of the uniformly distributed random variable 𝑋 are

𝔼 (𝑋) = 𝑎 + 𝑏
2 and 𝔻 (𝑋) = (𝑏 − 𝑎)2

12 .

To find the estimates of the parameters 𝑎 and 𝑏 we have to solve the equations:

𝑥 = 𝑎+𝑏
2 ,

𝑠2 = (𝑏−𝑎)2
12 .

Solving these equations we obtain:

𝑎 = = 𝑥 − √3𝑠,
𝑏 = = 𝑥 + √3𝑠.

Now we are ready to implement this estimates in R language. We take advance the pre-
viously defined functions variation()resp. stdev(). And here is the source code.

1 > x<-runif(1000,1,3) #generating the random sample
2 > a<-mean(x)-sqrt(3)*stdev(x)
3 > b<-mean(x)+sqrt(3)*stdev(x)
4 > a
5 [1] 1.018323 #can differ for other samples
6 > b
7 [1] 3.033395 #can differ for other samples

The maximum likelihood method

This method is based on maximizing a likelihood function so that, under the assumed
statistical model, the observed data is the most likely. The point in the parameter space
that maximizes the likelihood function is said to be the maximum likelihood estimate.
Formally, let us assume that 𝑋1, … , 𝑋𝑛 are independent identically distributed random
variables from the distribution with density 𝑓 (𝑥, 𝜃). The joined density is the product of
these univariate density functions:

𝐿(𝑥1, … , 𝑥𝑛; 𝜃) =
𝑛

∏
𝑖=1

𝑓 (𝑥, 𝜃).
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Just introduced function 𝐿(𝑥1, … , 𝑥𝑛; 𝜃) is then called the likelihood function. To get
the estimates of the parameters, we maximize this function by standard process known
from the mathematical analysis. To make the work easier, we maximize the function
ln 𝐿(𝑥1, … , 𝑥𝑛; 𝜃) instead of direct maximization of 𝐿(𝑥1, … , 𝑥𝑛; 𝜃). The natural logarithm
is increasing function, therefore it save the extremes and moreover convert the product
to the sum of functions.

We illustrate the method on the problem of estimating the probability 𝑝 of some
random event 𝐴. We can interpret this situation as an results of the alternative random
variable that is indicator of the random event 𝐴. Therefore we have ℙ (𝑋 = 1) = 𝑝 and
ℙ (𝑋 = 0) = 1−𝑝. We perform 𝑛 random trials and observe the occurrence of event 𝐴. So
we get a sample 𝑋1, … , 𝑋𝑛 of random variables with the densities 𝑓 (𝑥𝑖 , 𝑝) = 𝑝𝑥𝑖 (1−𝑝)1−𝑥𝑖 ,
where 𝑥𝑖 ∈ {0, 1}. The corresponding likelihood function has the form

𝐿(𝑥, 𝑝) =
𝑛

∏
𝑖=1

𝑝𝑥𝑖 (1 − 𝑝)1−𝑥𝑖 = 𝑝∑𝑛
𝑖=1 𝑥𝑖 (1 − 𝑝)𝑛−∑𝑛

𝑖=1 𝑥𝑖 .

In order to state the estimate of 𝑝 we will maximize the function 𝐿(𝑥, 𝑝) with respect to
the parameter 𝑝. To do so, we take natural logarithm of the likelihood function

ln(𝐿(𝑥, 𝑝)) =
𝑛
∑
𝑖=1

𝑥𝑖 ln 𝑝 + (𝑛 −
𝑛
∑
𝑖=1

𝑥𝑖) ln(1 − 𝑝),

and we set its derivative with respect to 𝑝 equal to 0:

d ln 𝐿(𝑥, 𝑝)
d𝑥 = ∑𝑛

𝑖=1 𝑥𝑖
𝑝 − 𝑛 − ∑𝑛

𝑖=1 𝑥𝑖
1 − 𝑝 = 0.

Multiplying the equation by
1
𝑛 we have

𝑥 ⋅ 1𝑝 − (1 − 𝑥) ⋅ 1
1 − 𝑝 = 0,

and its solution is
𝑝 = 𝑥.

To confirm that 𝑝 = 𝑥 really maximizes the likelihood function, we have to verify the
second order condition. For the second derivative of the likelihood function logarithm
we have

d2 ln 𝐿(𝑥, 𝑝)
d𝑥2 = −𝑥𝑝 + (1 − 𝑥) ⋅ 1

(1 − 𝑝)2 .

Substituting 𝑝 = 𝑥 we get

(d
2 ln 𝐿(𝑥, 𝑝)

d𝑥2 )
𝑝=𝑥

= − 1
1 − 𝑥 < 0.

So we have the most likely estimate 𝑝 = 𝑥 . We can use this approach to determine just
how biased an unfair coin is. At first we generate the sample of 0 and 1 which indicates
tossing head or tail. To get sample of unfair coin, we declare the vector of probabilities
prob, how we can see in the source code:
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1 > x<-sample(c(0,1),1000,replace=TRUE,prob=c(2/3,1/3))
2 > mean(x)
3 [1] 0.304

6.2.2 Confidence intervals
The confidence interval can be defined as the range of estimates for an unknown parame-
ter, that contains the real value of the parameter with given probability. This probability
that the parameter is within the given interval is reported as the confidence level. The
most common confidence level used in practice is 95%, but other levels (such as 90% or
99%) are also frequently used.

Formally, letX = (𝑋1, … , 𝑋𝑛) is a random sample from distribution that depends on
the unknown parameter 𝜃 . A confidence interval for the parameter 𝜃 , with confidence
level 𝛼 , is an interval with random endpoints (𝑢(X); 𝑣(X)), determined by the pair of
random variables 𝑢(X) and 𝑣(X), with the property:

ℙ (𝑢(X) < 𝜃 < 𝑣(X)) = 𝛼.
The derivation of the confidence interval we can illustrate on the normal distribu-

tion. Let as assume, at first, that 𝑋1, … , 𝑋𝑛 is a random sample from the normal distri-
bution 𝑁(𝜇, 𝜎2), whose standard deviation 𝜎 is known. We want to find the confidence

interval for the mean 𝜇. Because 𝑋 has the normal distribution 𝑁 (𝜇, 𝜎
2

𝑛 ), we have

ℙ(
||||
𝑋 − 𝜇

𝜎
√𝑛

||||
< 𝑐) = 2Φ(𝑐) − 1, for all 𝑐 > 0,

what is equivalent to

ℙ (𝑋 − 𝑐 𝜎
√𝑛 < 𝜇 < 𝑋 + 𝑐 𝜎

√𝑛) = 2Φ(𝑐) − 1, for all 𝑐 > 0.

From the last relation, it follows that the confidence interval for the mean with the con-
fidence level 𝛼 = 2Φ(𝑐) − 1 has the form

(𝑋 − 𝑐 𝜎
√𝑛 ; 𝑋 + 𝑐 𝜎

√𝑛) .

If we take in account, that 𝑐 = Φ−1 ( 𝛼+12 ), we can write the confidence interval in the
form

(𝑋 − Φ−1 (𝛼 + 1
2 ) 𝜎

√𝑛 ; 𝑋 + Φ−1 (𝛼 + 1
2 ) 𝜎

√𝑛) .

Clearly, we use the quantile function qnorm() to find the bounds of the confidence in-
terval. Here follows the complete process of stating the confidence level as the R source
code:

1 x<-rnorm(100,1,2) # we generate some sample
2 > n<-length(x)
3 > sample.mean<-mean(x)
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4 > sample.sd<-2 # standard deviation is known
5 > alpha<-0.95 # seting the confidence level 95\%
6 > c<-qnorm((alpha+1)/2,0,1)
7 > margin<-c*sample.sd/sqrt(n)
8 > lower.bound<-sample.mean-margin
9 > upper.bound<-sample.mean+margin

10 > print(c(lower.bound,upper.bound))
11 [1] 0.8149884 1.5989740

Now let us see, how is the confidence interval changed, if the standard deviation is
unknown. Then we have to use the unbiased estimate of the standard deviation 𝑠2 =1
𝑛−1 ∑

𝑛
𝑖=1(𝑋 − 𝑋𝑖)2, 𝑠 = √𝑠2. Then the random variable

𝑇 = 𝑋 − 𝜇
𝑠 √𝑛,

follows the Student’s 𝑡-distribution with 𝑛−1 degrees of freedom. The confidence interval
is then given

(𝑋 − 𝑐 𝑠
√𝑛 ; 𝑋 + 𝑐 𝑠

√𝑛) .

Here 𝑐 is the corresponding quantile of the Student distribution, so we apply the qt()
function in R. We modify the source code to the following form.

1 > n<-length(x) # we use previously generated sample
2 > sample.mean<-mean(x)
3 > sample.sd<-sd(x) # estimate instead of unknown standard deviation
4 > alpha<-0.95
5 > c<-qt((alpha+1)/2,df=n-1)
6 > margin<-c*sample.sd/sqrt(n)
7 > lower.bound<-sample.mean-margin
8 > upper.bound<-sample.mean+margin
9 > print(c(lower.bound,upper.bound))

10 [1] 0.8118763 1.6020861

Let us now look at the confidence interval for the variance of the normal distribution.
If 𝑠2 is the unbiased estimate of the variance, then the random variable

𝑌 = (𝑛 − 1)𝑠2
𝜎2 = ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2
𝜎2 =

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥
𝜎 )

2

follows the 𝜒2(𝑛 − 1) distribution. For the confidence interval we get

ℙ(𝑐1 < 𝜒2 < 𝑐2) = 𝛼

ℙ (𝑐1 <
(𝑛 − 1)𝑠2

𝜎2 < 𝑐2) = 𝛼

ℙ (𝜎 ∈ ((𝑛 − 1)𝑠2
𝑐2

; (𝑛 − 1)𝑠2
𝑐1

)) = 𝛼,

where 𝑐1 and 𝑐2 are the critical values of the 𝜒2(𝑛 − 1) distribution. When computing, we
have to respect that 𝜒2 distribution is not symmetric, what is important for stating the
critical values 𝑐1 and 𝑐2. It is easily visible from the source code.
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1 > n<-length(x) # the sample already generated sooner
2 > sample.var<-var(x)
3 > c1<-qchisq(1-(alpha+1)/2,df=n-1) # consequent of asymmetry
4 > c2<-qchisq((alpha+1)/2,df=n-1) # consequent of asymmetry
5 > lower.bound<-sample.var*(n-1)/c2
6 > upper.bound<-sample.var*(n-1)/c1
7 > print(c(lower.bound,upper.bound))
8 [1] 3.056626 5.350767

As the last example, we will show the confidence interval for the probability of a random
event. The unbiased estimate of the probability 𝑝 of a random event occurring is ̂𝑝 = 𝑚

𝑛 ,
where 𝑚 is the number of occurrences of the observed event in a series of 𝑛 random
trials. We can also interpret this value as the proportion 𝑚 of elements with the observed
property in a random sample of size 𝑛. We then speak about the so-called population
proportion. We know, that 𝔼 ( ̂𝑝) = 𝑝 and𝔻 ( ̂𝑝) = 𝑝𝑞

𝑛 , where 𝑞 = 1−𝑝. The approximative

equality
𝑝𝑞
𝑛 ≈ ̂𝑝𝑞̂

𝑛 holds for the large 𝑛. Therefore the random variable

𝑍 =
𝑚
𝑛 − 𝑝

√
̂𝑝𝑞̂
𝑛

follows the standardized normal distribution 𝑁(0, 1). Then we can write the confidence
interval for the probability 𝑝 with confidence level 𝛼 as

( ̂𝑝 − Φ−1 (𝛼 + 1
2 ) ⋅

√
̂𝑝𝑞̂
𝑛 ; ̂𝑝 + Φ−1 (𝛼 + 1

2 ) ⋅
√

̂𝑝𝑞̂
𝑛 ) .

Example 6.2.1 Suppose 250 randomly selected people are surveyed to determine if they own
a tablet. Of the 250 surveyed, 98 reported owning a tablet. Using a 95% confidence level,
compute a confidence interval estimate for the true proportion of people who own tablets.

Solution: As the first step we calculate the unbiased point estimate of the probability 𝑝
as ̂𝑝 = 98/250 and further we define 𝑞̂ = 1 − ̂𝑝. Now we can calculate the bounds of the
confidence interval with use of the qnorm() function. Let us see the source code:

1 > n<-250
2 > p<-98/n
3 > q<-1-p
4 > c<-qnorm((1+alpha)/2,0,1)
5 > lower.bound<-p-c*sqrt(p*q/n)
6 > upper.bound<-p+c*sqrt(p*q/n)
7 > print(c(lower.bound,upper.bound))
8 [1] 0.3314836 0.4525164

So we obtained the 95% confidence interval (0.3315; 0.4525) for the proportion of people
owning the tablet.
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132 Chapter 7

Hypotheses testing

By hypothesis we understand an educated guess about something in the world around us.
It should be testable, either by experiment or observation. A statistical hypothesis is then
any numerical assumption about the parameters of one or more basic ensembles or about
the type of probability distribution in the basic population. However, this assumption is
based on other sources of information, not on the basis of random selection. Hypothesis
testing is then understood as testing the validity of a statistical hypothesis using the
knowledge obtained by statistical investigation in a sample. Hence, we specify a decision
rule by which we decide the validity or invalidity of the hypothesis.

We categorize two basic types of tests:

• parametric tests involving unknown parameters, they are based on known distri-
butions.

• non-parametric tests concerning in general properties of the underlying popula-
tion, no knowledge of the distribution in the underlying population is required.

The first step in hypothesis testing is to formulate a statistical hypothesis, which is
the research question within the experiment. We formulate it in the form of a zero hy-
pothesis 𝐻0, which expresses a statement about the zero difference between the tested
data sets, and the alternative hypothesis 𝐻1, which denies the validity of 𝐻0.The alter-
native hypothesis can be either two sided e.g.

𝐻0 ∶ 𝜇1 = 𝜇2 versus 𝐻1 ∶ 𝜇1 ≠ 𝜇2,
or one sided e.g.

𝐻0 ∶ 𝜇1 = 𝜇2 versus 𝐻1 ∶ 𝜇1 > 𝜇2 resp. 𝐻1 ∶ 𝜇1 < 𝜇2.
The error 𝛼 chosen by the experimentalist that determines the probability of reject-

ing the null hypothesis despite it being true is called the significance level of the test.
The most frequented values are 𝛼 = 0.05 and 𝛼 = 0.01.

The decision to reject the null hypothesis may be burdened with error due to the
random nature of the selection. We distinguish between two types of error.

1. A type I error is the mistaken rejection of an actually true null hypothesis (also
known as a “false positive” finding or conclusion). The decision to reject the null
hypothesis depends on the size of the significance level 𝛼 . At a higher value, the
probability of a type 1 error increases. The significance level is also the probability
of a type I error.

2. A type II error is the mistaken non-rejection of an actually false null hypothesis
(also known as a “false negative” finding or conclusion). The rate of the type II
error is denoted by𝛽 and related to the power of a test, which equals 1 − 𝛽 .



Table 7.1: Test error classification

Decision REJECT DO NOT REJECT
Hypothesis 𝐻0 𝐻0
𝐻0 holds Type I error True

𝛼 1 − 𝛼
𝐻0 does not hold True Type II error

1 − 𝛽 𝛽

The types of errors are surveyed in table 7.1.
The next important step in hypothesis testing is the selection of an appropriate test

criterion as the random variable 𝑄 = 𝑓 (𝑋 , Θ). Using the data in the sample and the
assumed value of Θ0, we calculate the specific value of the test criterion 𝑞 = 𝑓 (𝑥, Θ0.
Now we determine the critical values 𝑐1 and 𝑞𝑐2, that correspond to the quantiles

𝐹(𝑐1) =
𝛼
2 , 𝐹 (𝑐2) = 1 − 𝛼

2 ,

where 𝐹() is the distribution function of the random variable 𝑄.These values determine
the so-called critical area of the test, which is the interval (𝑐1; 𝑐2) (by other words, the
critical area is the confidence interval for the values of the testing variable 𝑄). We reject
the null hypothesis, if the value 𝑞 lies outside the critical area.

The 𝑝-value is also an important characteristic of statistical tests. The 𝑝-value is
used as an alternative to rejection points to provide the smallest level of significance at
which the null hypothesis would be rejected. A very small 𝑝-value means that such an
extreme observed outcome would be very unlikely under the null hypothesis. Report-
ing 𝑝-values of statistical tests is common practice in academic publications of many
quantitative fields. Formally, let us consider an observed test-statistic 𝑞 from unknown
distribution 𝑄. Then the 𝑝-value is:

• 𝑝 = ℙ (𝑄 ≥ 𝑞|𝐻0) for a one-sided right-tail test,
• 𝑝 = ℙ (𝑄 ≤ 𝑞|𝐻0) for a one-sided left-tail test,
• 𝑝 = 2min{ℙ (𝑄 ≥ 𝑞|𝐻0) , ℙ (𝑄 ≤ 𝑞|𝐻0)} for a two-sided test. If distribution 𝑄 is sym-

metric about zero, then 𝑝 = ℙ (|𝑄| ≥ |𝑞|||𝐻0).

7.1 Parametric tests
Parametric tests are those that make assumptions about the parameters of the popula-
tion distribution from which the sample is drawn. This is often the assumption that the
population data are normally distributed. here are more types of the parametric tests:

• The one-sample test is a statistical hypothesis test used to determine whether an
unknown population parameter is different from a specific value.

• The two-sample test is a test performed on the data of two random samples, each
independently obtained from a different given population. The purpose of the test
is to determine whether the difference between these two populations is statisti-
cally significant.
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• The paired test compares the parameters of twomeasurements taken from the same
individual, object, or related units. While two-sample test is used when the data of
two samples are statistically independent, the paired test is used when data is in
the form of matched pairs.

7.1.1 One-sample tests

A one sample test compares the value of any parameter of distribution stated for sample
to a pre-specified value and tests for a deviation from that value. For example we might
know that the average birth weight for babies in some country is 3,410 grams and wish to
compare the average birth weight of a sample of babies in another country to this value.

One sample 𝑡-test
Let 𝑋1, … , 𝑋𝑛 is a random sample from the normal distribution 𝑁(𝜇, 𝜎2), where 𝑛 ≥ 2. We
will deal with the test of the hypothesis 𝐻0 ∶ 𝜇 = 𝜇0 with alternative 𝐻1 ∶ 𝜇 ≠ 𝜇0. In such
situation we speak about two side alternative. Alternatively we can state the alternative
hypothesis as 𝐻1 ∶ 𝜇 < 𝜇0 or 𝐻1 ∶ 𝜇 > 𝜇0 and speak about the one side alternative. The
corresponding testing statistics has the form:

𝑇 = 𝑋 − 𝜇
𝑠 √𝑛

and it follows the 𝑡-distribution with 𝑛 − 1 degrees of freedom.

Example 7.1.1 The machine fills boxes with detergent. Each box should contain 5 kg of
powder. We selected 10 boxes randomly from the production and their contents were accu-
rately weighed. We found the following deviations from the required weight (in dag):

−5, 4, −1, −8, 7, −6, 4, −3, 2, −2
We have to verify that there is no systematic deviation of the machine settings.

Solution: The data will be treated as a selection from the normal distribution 𝑁(𝜇, 𝜎2). If
there is no system error, the hypothesis𝐻0 ∶ 𝜇 = 0 holds, while the deviation is evidenced
by the fact that 𝐻1 ∶ 𝜇 ≠ 0. If we compute manually, we have

1 > T<-(mean(x)-0)/sd(x)*sqrt(length(x))
2 > T
3 [1] -0.7436885
4 > qt(0.975,length(x)-1)
5 [1] 2.262157

We compare the value of the statistics 𝑇 with the critical value of the 𝑡-distribution. Be-
cause |𝑇 | < 𝑡0.975(9), we ca not reject the hypothesis, that the automatic machine is cor-
rectly set. We can also use the implemented function t.test() that provides complete
information about the test and confidence intervals.

1 > t.test(x,mu=0,alternative="two.sided",conf.level=0.95)
2
3 One Sample t-test
4
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5 data: x
6 t = -0.74369, df = 9, p-value = 0.476
7 alternative hypothesis: true mean is not equal to 0
8 95 percent confidence interval:
9 -4.445988 2.245988

10 sample estimates:
11 mean of x
12 -1.1
13 >

As the output of the function t.test()we get the value of the testing statistics, number
of degree of freedom, the 𝑝-value, the 95% confidence interval (−4.446; 2.246) for the 𝜇
parameter and the mean of the sample.

The size of our sample is small, 𝑛 = 10, so we should test the normality at first.
We apply Shapiro-Wilk test which examines if a variable is normally distributed in some
population. In the R environment there is implemented the function shapiro.test().
Using it, we have

1 > shapiro.test(x)
2
3 Shapiro-Wilk normality test
4
5 data: x
6 W = 0.98509, p-value = 0.9866

From the output, the p-value is greater than the significance level 0.05 implying that the
distribution of the data are not significantly different from normal distribution. In other
words, we can assume the normality.

Wilcoxon test

Let us suppose, that 𝑋1, … , 𝑋𝑛 is a random sample from the continuous distribution with
the density 𝑓 that is symmetric according to the point 𝑎. This kind of symmetry means
that equality 𝑓 (𝑥 + 𝑎) = 𝑓 (𝑥 − 𝑎) holds. Therefore 𝑎 equals to the median 𝑥̃ . If there exists
finite mean value of the distribution, it is also 𝔼 (𝑋𝑖) = 𝑎 for each 𝑖 = 1, … , 𝑛. However,
the finiteness of the mean value is not generally assumed. The Wilcoxon test is designed
to test the hypothesis 𝐻0 ∶ 𝑥̃ = 𝑥0 with alternative 𝐻1 ∶ 𝑥̃ ≠ 𝑥0.

We assume that none of the values in the sample equals to 𝑥0. If some of the values
𝑋𝑖 equals to 𝑥0, it is usually omitted from the sample. The test is then based on ordering
of the variables 𝑌𝑖 = 𝑋𝑖 −𝑥0 into the sequence, non-decreasing according to their absolute
values

|𝑌(1)| ≤ |𝑌(2)| ≤ ⋯ ≤ |𝑌(𝑛)|.
Let us assign as 𝑅+𝑖 the order of the variable |𝑌𝑖 | in the sequence above. Further we define

𝑆+ = ∑
𝑌𝑖≥0

𝑅+𝑖 , 𝑆− = ∑
𝑌𝑖<0

𝑅+𝑖 .

If the value ofmin{𝑆+, 𝑆−} less than the critical value 𝑤(𝛼)1 we reject the hypothesis.
The complete procedure is quite laborious, therefore we rather use the implemented

function wilcox.test(). let us see an example.

1The values are tabled in the statistical tables.
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Example 7.1.2 Fifteen subjects were asked to estimate independently, without prior practice,
when one minute would elapse from a given signal.The following results were obtained (in
seconds)

54, 49, 46, 56, 64, 52, 67, 57, 51, 59, 58, 62, 63, 57, 52.
We want to test the hypothesis that in the human population, half of the people underesti-
mate the length of one minute while the second half overestimate it.

Solution: In the R environment we use the function wilcox.test(). According to the
conditions, we use the parameters mu=60 and conf.level=0.95. So we obtain

1 > x<-c(54, 49, 46, 56, 64,52,67,57,51,59,58,62,63,57,52)
2 > wilcox.test(x,mu=60,conf.level=0.95)
3
4 Wilcoxon signed rank test with continuity correction
5
6 data: x
7 V = 25, p-value = 0.04973
8 alternative hypothesis: true location is not equal to 60

Due to the 𝑝-value less than 0.05, we can reject the hypothesis with the significance
level 95%. As a part of the answer of the function we also receive the warning message
cannot compute exact p-value with ties what is caused by small sample size.

Test for the variance of the normal distribution

Let 𝑋1, … , 𝑋𝑛 is a random sample from the normal distribution 𝑁(𝜇, 𝜎2) and we suppose
that both parameters of the distribution are unknown. We will use the unbiased estimate
of 𝜎2

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2 = 1
𝑛 − 1 (

𝑛
∑
𝑖=1

𝑋 2𝑖 + 𝑛𝑋) .

Our aim is to test the hypothesis 𝐻0 ∶ 𝜎2 = 𝜎20 with two-side alternative 𝐻1 ∶ 𝜎2 ≠ 𝜎20 or
one-side alternative 𝐻1 ∶ 𝜎2 > 𝜎20 resp. 𝐻1 ∶ 𝜎2 < 𝜎20 . The testing statistics has the form

𝑊 = (𝑛 − 1)𝑠2
𝜎20

,

and it follows the 𝜒2 distribution with 𝑛 − 1 degrees of freedom if the mean is known
and 𝑛 − 2 if the mean has to be estimated from the sample. As the 𝜒2 distribution is
not symmetric, we must compare the value of the statistics 𝑊 with two critical values
𝜒𝑛−1 ( 𝛼2 ) and 𝜒𝑛−1 (1 − 𝛼

2 ). In the case of the one-side alternatives the corresponding

confidence intervals the critical values are 𝜒2𝑛−1(𝛼) for the alternative 𝜎 > 𝜎20 and 𝜒2𝑛−1(1−
𝛼) for the alternative 𝜎 < 𝜎20 .

The varTest() function to perform a one-sample test for variance is part of the
EnvStats package. It is not to be confused with the var.test() function, which is used
for tests comparing the variances of two random samples, or the chi.test() function,
which is used for goodness-of-fit tests.

Example 7.1.3 In the cement factory, they fill cement into bags weighing 50 kg. The fill-
ing equipment is set up so that the amount of cement in the bags follows the distribution
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𝑁(50, 0.152). In order to verify the assumption 𝜎 = 0.15, the control weighed the contents of
10 bags and found the following values:

50.12, 49.81, 50.00, 50.18, 49.95, 50.03, 49.98, 50.10, 50.14
We have to test the hypothesis 𝐻0 ∶ 𝜎2 = 0.152 on the significance level 95%.

Solution: As the first step we have to load the EnvStats package. Then we can apply
the varTest() function with argument sigma.squared=0.0225. So we have

1 > library("EnvStats")
2 > x<-c(50.12, 49.81,50.00,50.18,49.95,50.03,49.98,50.10,50.14)
3 > varTest(x,alternative="two.sided",conf.level=0.95,
4 sigma.squared=0.15^2)
5
6 Results of Hypothesis Test
7 --------------------------
8 Null Hypothesis: variance = 0.0225
9 Alternative Hypothesis: True variance is not equal to 0.0225

10 Test Name: Chi-Squared Test on Variance
11 Estimated Parameter(s): variance = 0.01320278
12 Data: x
13 Test Statistic: Chi-Squared = 4.694321
14 Test Statistic Parameter: df = 8
15 P-value: 0.4206164
16 95\% Confidence Interval: LCL = 0.006023664
17 UCL = 0.048456546

So we can not reject the hypothesis, that the filling machine works correctly. Let us
note, the number of degrees of freedom df=8 that corresponds to the fact, that mean
was estimated from the sample. Last two values give us the information about the 95%
confidence interval for the variance (0.006; 0.0485). From the sense of the assignment,
we would obviously be interested in the one-sided alternative, which variance does not
exceed the allowed limit. In this case, we are testing a one-sided alternative and thus
must specify the parameter alternative="greater".

Significance test for a population proportion

Now, let us suppose we need to verify if probability of some event is equal to 𝑝0. This
probability can be also interpreted, as the proportion of the elements in some popula-
tion, which have some property. To estimate ̂𝑝 the probability 𝑝0, we can proceed by
conducting 𝑛 independent random trials and observing the occurrence of the event. We
can also describe this procedure by selecting a sample of size 𝑛 from the population un-
der study and determining the proportion ̂𝑝 of elements with the observed probability in
that sample. Thus, in both cases, it is in the final a hypothesis test for the 𝑝 parameter of
the binomial distribution. This test is used we have a simple random sample where each
observation can result in just two possible outcomes, a success and a failure.

Formally, let 𝑌 ∼ 𝐵𝑖(𝑛, 𝑝) and we test the hypothesis 𝐻0 ∶ 𝑝 = 𝑝0 against the al-
ternative 𝐻1 ∶ 𝑝 ≠ 𝑝0. For sufficiently large values of 𝑛, we use an approximation of
the binomial distribution by the normal distribution, and the test statistic then takes the
form

𝑈 = 𝑌 − 𝑛𝑝0
√𝑛𝑝0(1 − 𝑝0)

, (7.1)
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and it asymptotically follows the standardized normal distribution. We reject the hy-
pothesis 𝐻0 if its value exceeds the critical value of the standardized normal distribution.
i.e if |𝑈 | ≥ 𝑢 𝛼

2
.

To perform this test in R environment, we use the function prop.test(sample).
Its full syntax takes the form
prop.test (x, n, p = 0.5, alternative = "two.sided", conf.level = alpha).
Here x is number of positive results (successes), n is the number of trials, p the hypothe-
sized probability of success, parameter alternativewe can set also to less or greater
if we perform the one-sided test. The last parameter conf.level we set to be equal to
the requested confidence level.

Example 7.1.4 Suppose we toss a coin 100 times and get 52 heads. verify if the coin is fair,
means if probability of tossing the head 𝑝 = 0.5.
Solution: We can use prop.test to assess whether or not the coin is fair. To do so
we enter the following values: x=52, n=100, p=0.5, alternative=two.sided and
conf.level=0.95. here is the source code and answer

1 > prop.test(x=52,n=100,p=0.5,alternative="two.sided",
2 conf.level=0.95)
3
4 1-sample proportions test with continuity correction
5
6 data: 52 out of 100, null probability 0.5
7 X-squared = 0.09, df = 1, p-value = 0.7642
8 alternative hypothesis: true p is not equal to 0.5
9 95 percent confidence interval:

10 0.4183183 0.6201278
11 sample estimates:
12 p
13 0.52

Since the p-value is greater than 0.05, we cannot reject the null hypothesis that the pop-
ulation proportion is 0.5. Therefore we can consider the coin to be fair.

7.1.2 Two-sample tests

A two-sample test is a test performed on the data of two random samples, each indepen-
dently obtained from a different given population. The purpose of the test is to determine
whether the difference between these two populations is statistically significant.

Two sample 𝑡-test
Let 𝑋1, … , 𝑋𝑚 is a random sample from the normal distribution𝑁(𝜇1, 𝜎2) and let 𝑌1, … , 𝑌𝑛
is a random sample from the normal distribution 𝑁(𝜇2, 𝜎2), and let 𝑚 ≥ 2, 𝑛 ≥ 2 and
𝜎2 > 0. We further suppose, that both samples are independent. Let us assign

𝑋 = 1
𝑚 ∑𝑚

𝑖=1 𝑋𝑖 𝑌 = 1
𝑛 ∑

𝑛
𝑖=1 𝑌𝑖

𝑆2𝑋 = 1
𝑚−1 ∑

𝑚
𝑖=1(𝑋𝑖 − 𝑋)2 𝑆2𝑌 = 1

𝑛−1 ∑
𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2.
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A two-sample test refers to the hypothesis 𝐻0 ∶ 𝜇1 − 𝜇2 = 𝛿 , where 𝛿 is a given number
(most frequently we set 𝛿 = 0) against the alternative .𝐻1 ∶ 𝜇1 − 𝜇2 ≠ 𝛿 . The testing
statistics has the form

𝑇 = 𝑋 − 𝑌 − 𝛿

√(𝑚 − 1)𝑆2𝑋 + (𝑛 − 1)𝑆2𝑌 √
𝑚𝑛(𝑚 + 𝑛 − 2)

𝑚 + 𝑛 , (7.2)

that follows the Student’s distribution 𝑡(𝑚 + 𝑛 − 2) with 𝑚+𝑛 − 2 degrees of freedom. The
hypothesis is rejected if |𝑇 | ≥ 𝑡𝑚+𝑛−2(𝛼).

To perform the test in the R environment, we use the function t.test() . Its full
syntax is

t.test(x,y,mu,alternative,var.equal = FALSE, conf.level = alpha),

where xand y are samples, mu is the difference of the means, alternative determines,
as usually, if we perform one=sided or two=sided test, conf.level is set to the required
confidence level 𝛼 . The parameter var.equal is logical value indicating whether to treat
the two variances as being equal. If TRUE then the pooled variance is used to estimate the
variance otherwise theWelch (or Satterthwaite) approximation to the degrees of freedom
is used.

Example 7.1.5 Suppose we have measured the height of 10 men and 10 women, with results
summarized in the table:

Height (in cm)
Men 187 185 180 192 178 185 183 176 181 190
Women 175 168 170 174 180 176 168 163 182 171

Let us test, if the average height of men is greater than average height of women.

Solution: At first, we must prepare the data sets men_height and women_height. Then
we can apply the t.test() function, how we can see in the next source code.

1 > women_height<-c(175,168,170,174,180,176,168,163,182,171)
2 > men_height <- c(187,185,180,192,178,185,183,176,181,190)
3 > t.test(women_height, men_height, conf.level=0.95)
4
5 Welch Two Sample t-test
6
7 data: women_height and men_height
8 t = -4.4816, df = 17.705, p-value = 0.0002994
9 alternative hypothesis: true difference in means is not equal to 0

10 95 percent confidence interval:
11 -16.162827 -5.837173
12 sample estimates:
13 mean of x mean of y
14 172.7 183.7

We see, that the p-value is less than 0.05, so we can reject the hypothesis, that the average
height is the same for men and women. Moreover, we see from the answer, that the
function t.test() performed automatically the Welch modification of the test. It is
because we have not declared equal variances of both samples. We can compare it with
the next source code, where we set var.equal=TRUE. In such situation the function
performs directly the 𝑡-test.
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1 > t.test(women_height, men_height, conf.level=0.95,var.equal=TRUE)
2
3 Two Sample t-test
4
5 data: women_height and men_height
6 t = -4.4816, df = 18, p-value = 0.0002885
7 alternative hypothesis: true difference in means is not equal to 0
8 95 percent confidence interval:
9 -16.156659 -5.843341

10 sample estimates:
11 mean of x mean of y
12 172.7 183.7

Finally, we can see from the answer, that average heights are 172.2 cm for women
and 183.7 cm for men. So we can illustrate also test on the difference of the means. To
do so, we have to set the value of the mu variable of the t.test() function.

1 > t.test(women_height, men_height, mu=-10,conf.level=0.95,
2 var.equal=TRUE)
3
4 Two Sample t-test
5
6 data: women_height and men_height
7 t = -0.40742, df = 18, p-value = 0.6885
8 alternative hypothesis:true difference in means is not equal to -10
9 95 percent confidence interval:

10 -16.156659 -5.843341
11 sample estimates:
12 mean of x mean of y
13 172.7 183.7

Since the p-value is greater than 0.05, we cannot reject the hypothesis that the difference
of the average heights of men andwomen is 10 cm. Let us note, that we had to set mu=-10
since we entered as the first variable women_height and the average height of women
is less than average height of men.

F-test of equality of variances

This test is used to test the null hypothesis that two independent samples have the same
variance. we will assume that 𝑋1, … , 𝑋𝑚 and 𝑌1, … , 𝑌𝑛 are two independent samples from
the normal distributions 𝑁(𝜇1, 𝜎21 ) and 𝑁(𝜇2, 𝜎22 ) respectively. Further we assume 𝑚 ≥
2,𝑛 ≥ 2, 𝜎21 > 0 and 𝜎22 > 0. If the hypothesis 𝐻0 ∶ 𝜎21 = 𝜎22 holds, the random variable

𝑍 = 𝑆2𝑋
𝑆2𝑌

follows the Fisher’s F-distribution 𝐹(𝑚 − 1, 𝑛 − 1) with 𝑚 − 1 and 𝑛 − 1 degrees

of freedom. As usual, we reject the hypothesis 𝐻0 ∶ 𝜎21 = 𝜎22 if the value of the random
variable 𝐹 fell outside the interval with the endpoints 𝐹𝑚−1,𝑛−1 (1 − 𝛼

2 ) and 𝐹𝑚−1,𝑛−1 ( 𝛼2 ).
In the R environment we perform this test using the function var.text(). Its full syntax
is
var.test(x, y, ratio = 1, alternative = "two.sided",conf.level = 0.95),
where x and y are the samples, ratio is the tested ratio between the samples ( if we test
equality of variances, we set ratio = 1, which is also implicit value), alternative and
conf.level have the usual meaning.
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Example 7.1.6 Let us return to the example 7.1.5. Before we perform the 𝑡-test, we should
verify, if the variances of both samples are same. Therefore, we test the assumption that the
variances of the measured heights of women and men are equal.

Solution: We have already insert the values of the samples. Su we can just call the
var.test() function, how we can see in the source code.

1 > var.test(women_height,men_height,ratio=1,conf.level=0.95)
2
3 F test to compare two variances
4
5 data: women_height and men_height
6 F = 1.2965, num df = 9, denom df = 9, p-value = 0.7052
7 alternative hypothesis: true ratio of variances is not equal to 1
8 95 percent confidence interval:
9 0.3220284 5.2196392

10 sample estimates:
11 ratio of variances
12 1.296485

Due to the p-value greater than 0.05, we can not reject the hypothesis, that both sam-
ples have the same variance. So, we could consequently set in the 𝑡-test the variable
var.equal to be TRUE.

7.1.3 Homogeneity test of two binomial distributions
Now, we turn our attention towards testing whether one population proportion 𝑝1 equals
a second population proportion 𝑝2. It means, we will test the hypothesis 𝐻0 ∶ 𝑝1 = 𝑝2
against the alternative 𝐻1 ∶ 𝑝1 ≠ 𝑝2.

These proportions can also be interpreted as the occurrence of a random event 𝐴 in
two observations. Suppose event𝐴 occurred in 𝑚 independent observations 𝑋 times and
in a second series of 𝑛 independent observations 𝑌 times. The values 𝑝1 and 𝑝2 are the
probabilities of occurrence of event 𝐴 in these two series of trials. For the distribution
of the random variables 𝑋 and 𝑌 clearly holds 𝑋 ∼ Bin ((, 𝑚) , 𝑝1) and 𝑌 ∼ Bin ((, 𝑛) , 𝑝2).
Therefore, the hypothesis 𝐻0 is sometimes called the hypothesis of homogeneity of two
binomial distributions.

Let us assign 𝑥 = 𝑋
𝑚 and 𝑦 = 𝑌

𝑛 , the estimates of the proportions (or probabilities) 𝑝1
and 𝑝2. As the testing statistics we define the random variable

𝑈 = 𝑥 − 𝑦

√
𝑥(1−𝑥)

𝑚 + 𝑦(1−𝑦)
𝑛

. (7.3)

If the hypothesis 𝐻0 holds, then random variable 𝑈 follows the standardized normal dis-
tribution 𝑁(0, 1). Therefore, we reject the hypothesis if |𝑈 | ≥ 𝑢 ( 𝛼2 ).

In the R environment we perform this test using the function prop.test(), whose
arguments x and n are entered as vectors. Other arguments are same as in the one-sample
case.

Example 7.1.7 Let us say we have two groups of student A and B. Group A with an early
morning class of 200 students with 142 female students. Group B with a late class of 200
students with 90 female students. Use a 95% confidence level. We want to know, whether the
proportions of females are the same in the two groups of the student?
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Solution: Weuse the prop.test() function andwe set x=c(142,90) and n=c(200,200).
The result we obtain after running the following source code:

1 > prop.test(x = c(142, 90), n = c(200, 200))
2
3 2-sample test for equality of proportions with continuity correction
4
5 data: c(142, 90) out of c(200, 200)
6 X-squared = 26.693, df = 1, p-value = 2.384e-07
7 alternative hypothesis: two.sided
8 95 percent confidence interval:
9 0.1616802 0.3583198

10 sample estimates:
11 prop 1 prop 2
12 0.71 0.45

We see the p-value is less then 0.05, so we can reject the hypothesis and say that there is
significant difference between these two proportions.

7.1.4 Paired tests
Paired samples typically consist of a sample of matched pairs of similar units, or one
group of units that has been tested twice. In practice, we frequently meet such situa-
tions where the values of two variables that are related to each other (e.g. visual acu-
ity of the left and right eye, blood clotting before and after administration of a certain
drug) are measured for each object. It means, we have sample of pairs random variables
(𝑋1, 𝑌1), … , (𝑋𝑛 , 𝑌𝑛). These 𝑛 pairs can be considered mutually independent because they
refer to different objects. In contrast, the quantities 𝑋𝑖 and 𝑌𝑖 with the same index can no
longer be considered independent because they are values measured at the same object.

Let us assume, that (𝑋1, 𝑌1), … , (𝑋𝑛 , 𝑌𝑛) is a sample from some two-dimensional dis-
tribution. If this distribution has finite first moments, we can ask if their means are
equal. So, we want to test the hypothesis 𝐻0 ∶ 𝔼 (𝑋𝑖) − 𝔼 (𝑌𝑖) = 𝜇0 against the alternative
𝐻1 ∶ 𝔼 (𝑋𝑖)−𝔼 (𝑌𝑖) ≠ 𝜇0, where 𝜇0 is given constant. We construct new random variables

𝑍1 = 𝑋1 − 𝑌1, … , 𝑍𝑛 = 𝑋𝑛 − 𝑌𝑛 .
Due to the assumptions, the random variables 𝑍1, … , 𝑍 −𝑛 are independent and identically
distributed with the mean 𝔼 (𝑍𝑖) = 𝔼 (𝑋𝑖) − 𝔼 (𝑌𝑖). If it can be further assumed that the
𝑍𝑖 variables follow a normal distribution, we can use one-sample 𝑡-test, introduced in the
subsection 7.1.1.

To perform the paired test in the R environment we use the function t.test(),
where we set the optional parameter paired=TRUE. We illustrate its use in the example.

Example 7.1.8 When testing a new treatment, the weight of 10 mice was measured before
and after applying the tested therapeutic preparation. The results are summarized in the
table:

Weight (in g)
Before 210.3 205.1 208.6 200.1 241.3 185.8 243.2 221.5 196.3 230.5
After 315.2 308.4 310.5 304.5 350.8 295.2 350.4 341.7 308.7 343.3
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Let us verify, if there is a significant difference in the weight of mice before and after treat-
ment.

Solution: Because our measurements record the weights of the same individual, we use
a paired test. When performing the computation in the R environment, we first initialize
the before and after vectors. We then use the Shapiro-Wilk test to make sure that the
differences of the two masses are not significantly different from a normal distribution.
See the source code:

1 > before<-c(210.3,205.1,208.6,200.1,241.3,185.8,243.2,221.5,
2 196.3,230.5)
3 > after<-c(315.2,308.4,310.5,304.5,350.8,295.2,350.4,341.7,
4 308.7,344.3)
5 > d<-before-after
6 > shapiro.test(d)
7
8 Shapiro-Wilk normality test
9

10 data: d
11 W = 0.93906, p-value = 0.5426

From the output, the p-value is greater than 0.05 implying that the distribution of the
differences (d) are not significantly different from normal distribution. In other words,
we can assume the normality. Now we are ready to perform the paired 𝑡-test:

1 > t.test(before, after, paired = TRUE)
2
3 Paired t-test
4
5 data: before and after
6 t = -61.228, df = 9, p-value = 4.169e-13
7 alternative hypothesis: true difference in means is not equal to 0
8 95 percent confidence interval:
9 -112.7161 -104.6839

10 sample estimates:
11 mean of the differences
12 -108.7

7.2 Non-parametric tests
In statistics, non-parametric tests are methods of statistical analysis that do not require a
distribution to meet the required assumptions to be analysed (especially if the data is not
normally distributed). Due to this reason, they are sometimes referred to as distribution-
free tests. Non-parametric tests serve as an alternative to parametric tests such as 𝑡-test.
Let us note, that non-parametric tests are only alternative but no substitute of the para-
metric tests. If the data meets the required assumptions for performing the parametric
tests, the relevant parametric test must be applied.

In order to obtain reliable results from statistical analysis, it is necessary to be able
to correctly identify whether to use a parametric or non-parametric test. Here are more
reasons, why to use non-parametric tests:

1. Data do not meet the assumptions about the population sample. Application of the
parametric tests requires various assumptions to be satisfied. For example the data
follows the normal distribution.
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2. The sample size is too small. In this case, it is possible that we may not be able to
verify the distribution of the data. It means, the use of non-parametric tests is the
only suitable option.

3. The analysed data is ordinal or nominal. Unlike parametric tests that can work
only with continuous data, non-parametric tests are the only solution to other data
types such as ordinal or nominal data.

7.2.1 Sign test

In particular, we use the sign test when the distribution of the variables 𝑋𝑖 is highly
skewed. Because the probability of an error of the second kind is relatively high compared
to other tests, it is desirable to have a larger number of observations available.

Let 𝑋1, … , 𝑋𝑛 is a sample from the continuous distribution with median 𝑥̃ . we test
the null hypothesis 𝐻0 ∶ 𝑥̃ = 𝑥0, where 𝑥0 is a given number. At first, we have to
compute the differences 𝑋1 −𝑥0, … , 𝑋𝑛 −𝑥0. Let us denote as 𝑌 the number of the positive
differences. If the null hypothesis 𝐻0 holds, the random variable 𝑌 follows the binomial
distribution Bin (𝑛, 12). We reject the hypothesis 𝐻0 if the value of 𝑌 is close to zero or 𝑛.

The sign test is a special case of the binomial test where the probability of suc-
cess under the null hypothesis is 𝑝 = 0.5. Therefore, in the R environment we use the
binom.test() function to perform the sign test. We illustrate its use in example.

Example 7.2.1 20 subjects were asked to estimate, without prior practice, the time when 1
minute had elapsed since a given signal. The following values (in seconds) were obtained:

53,48,45,55,63,51,66,56,50,58,62,49,52,65,47,57,54,67,42,55

We want to decide whether people are overestimating or underestimating their time interval
estimates.

Solution: If the median were 60, we would get the difference values 𝑌𝑖 = 𝑋𝑖 − 60. We first
determine how many of these values are negative (we only verify if 𝑋 > 60) and then
test whether this random variable follows a binomial distribution. The full procedure is
shown in the source code.

1 > x<-c(53,48,45,55,63,51,66,56,50,58,62,49,52,65,47,57,54,67,42,55)
2 > d<-sum(x>60)
3 > binom.test(d,20)
4
5 Exact binomial test
6
7 data: d and 20
8 number of successes = 5, number of trials = 20, p-value = 0.04139
9 alternative hypothesis:true probability of success

10 is not equal to 0.5
11 95 percent confidence interval:
12 0.08657147 0.49104587
13 sample estimates:
14 probability of success
15 0.25

The p-value is less than 0.05, so we can reject the hypothesis that median of the estimates
is 60. We see, that most of the people has tendency underestimate the length of the time
interval.
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7.2.2 Wilcoxon signed rank test

The one-sampleWilcoxon signed rank test is a non-parametric alternative to one-sample
t-test when the data cannot be assumed to be normally distributed. It is used to determine
whether the median of the sample is equal to a known standard value (i.e. theoretical
value).

Let𝑋1, … , 𝑋𝑛 is a sample from the continuous distribution, whose density is symetric
around the point 𝑎, i.e. 𝑓 (𝑎 + 𝑥) = 𝑓 (𝑎 − 𝑥). In this case the value 𝑎 must be equal to the
median 𝑥̃ . The null hypothesis is again 𝐻0 ∶ 𝑥̃ = 𝑥0 against the alternative 𝐻1 ∶ 𝑥̃ ≠ 𝑥0
Similarly like in the sign test, we define the random variables 𝑌𝑖 = 𝑋𝑖 − 𝑥0 . The variables
𝑌𝑖 are then sorted in non-decreasing sequence according their absolute values

|𝑌 |(1) ≤ |𝑌 |(2) ≤ ⋯ ≤ |𝑌 |(𝑛).
Let us further denote as 𝑅+𝑖 the order of the value |𝑌𝑖 | in the sequence and we define

𝑆+ = ∑
𝑌𝑖≥0

𝑅+𝑖 , 𝑆− = ∑
𝑌𝑖<0

𝑅+𝑖 .

We reject the hypothesis, if the value of min(𝑆+, 𝑆−) is less or equal tu the critical value
𝑤(𝛼) of the test.

In the R environment is implemented the wilcox.test() function. It takes the
form:

wilcox.test(x,mu=0,alternative="two sided")

where x is the sample, mu the hypothesised value (default 0), and alternative can be
”two sided”,”grater” or ”less”.

let us return to the previous example concerned in the time interval estimation. We
can use the Wilcoxon test, and we get the following results:

1 > x<-c(53,48,45,55,63,51,66,56,50,58,62,49,52,65,47,57,54,67,42,55)
2 > wilcox.test(x,mu=60)
3
4 Wilcoxon signed rank test with continuity correction
5
6 data: x
7 V = 33, p-value = 0.007559
8 alternative hypothesis: true location is not equal to 60

Due to the very small p-value this Wilcoxon test also rejects the hypothesis, that median
equals 60.

The Wilcoxon test can be applied also in its paired form to test if the difference
between two means is significantly different from zero. Using the Wilcoxon Signed-
Rank Test, we can decide whether the corresponding data population distributions are
identical without assuming them to follow the normal distribution. In the R environment
we use the wilcox.test() function with option paired=TRUE.

We will illustrate it on the data form example 7.1.8. Without verifying the normality
of the weight distribution, we can use the Wilcoxon paired test, how shows the source
code:
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1 > before <-c(210.3,205.1,208.6,200.1,241.3,185.8,243.2,221.5,
2 196.3,230.5)
3 > after <-c(315.2,308.4,310.5,304.5,350.8,295.2,350.4,341.7,
4 308.7,344.3)
5 > wilcox.test(before,after,paired=TRUE)
6
7 Wilcoxon signed rank test
8
9 data: before and after

10 V = 0, p-value = 0.001953
11 alternative hypothesis: true location shift is not equal to 0

Similarly like in the example 7.1.8, theWilcoxon test also rejects the hypothesis, that
the treatment does not influence the weight of the mice.

7.2.3 Mann-Whitney-Wilcoxon test
TheMann-Whitney-Wilcoxon test is used to test whether two samples are likely to derive
from the same population (i.e., that the two populations have the same shape). So, it is
a non-parametric test of the null hypothesis that, for randomly selected values X and Y
from two populations, the probability of X being greater than Y is equal to the probability
of Y being greater than X. The general assumptions of the test are as follows:

1. All observations from both groups are independent of each other.
2. The responses are at least ordinal (i.e., one can at least say, of any two observations,

which is the greater).
3. Under the null hypothesis 𝐻0, the distributions of both populations are equal.
4. The alternative hypothesis H1 is that the distributions are not equal.

Let us assume, that 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑚 are independent identically distributed
samples from 𝑋 and 𝑌 respectively. The corresponding Mann-Whitney-Wilcoxon U
statistic is defined as:

𝑈 =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑆(𝑋𝑖 , 𝑌𝑗),

where

𝑆(𝑋𝑖 , 𝑌𝑗) =
⎧
⎨
⎩

1 if 𝑋𝑖 > 𝑌𝑗 ,
1/2 if 𝑋𝑖 = 𝑌𝑗 ,
0 if 𝑋𝑖 < 𝑌𝑗 .

In order to perform the Mann-Whitney-Wilcoxon test in the R environment, we use
the wilcox.test() function. However, we need to sort the data into a data.frame struc-
ture, in which there will be one component that will act as an identifier of membership
in one of the two groups being compared. We illustrate it in example.

Example 7.2.2 Let us consider the clinical trial designed to investigate the effectiveness of
a new drug to reduce symptoms of asthma in children. A total of 𝑛 = 10 participants are
randomized to receive either the new drug or a placebo. Participants record the number
of episodes of shortness of breath over a 1 week period following receipt of the assigned
treatment. The data are summarized in the table.
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Placebo 7 5 6 4 12
New drug 3 5 4 2 1

Is there a statistically significant difference in number of the episodes over 1 week?

Solution. Here is a small sample size, that means the non-parametric test is a suitable
method. At first we create the vector x that contains all episode numbers and vector y
that contains only values 0 or 1, that indicates placebo or new drug application. We join
these vectors to build up the data frame. Then we are ready to perform the test, how it
is shown in the source code.

1 >x<-c(7,5,6,4,12,3,5,4,2,1)
2 > y<-c(0,0,0,0,0,1,1,1,1,1)
3 > treat<-data.frame(x,y)
4 > wilcox.test(x~y,data=treat)
5
6 Wilcoxon rank sum test with continuity correction
7
8 data: x by y
9 W = 23, p-value = 0.03558

10 alternative hypothesis: true location shift is not equal to 0

The p-value demonstrates, that we can confirm the decrease of the episodes after appli-
cation of the new drug on the confidence level exceeding 95%.

7.2.4 Kruskal-Wallis test
The Kruskal-Wallis test is used in a situation where we have three or more independent
samples on and we want to test for differences among the sample means. Sample ob-
servations in each group are assumed to come from populations with the same shape of
distribution. It is mainly used for selections that are considerably different from normal.

Suppose we have 𝐼 random selections, each of size 𝑛𝑖 . The null hypothesis has the
form

𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝐼 .
The method of the Kruskal-Wallis test we can describe in a few steps:

1. Let 𝑌𝑖1, … , 𝑌𝑖𝑛𝑖 , 𝑖 = 1, … , 𝐼 is a sample from continuous distribution and all samples
are independent. All values 𝑌𝑖𝑗 form a joint random sample with size 𝑛 = 𝑛1+⋯+𝑛𝐼 .
Rank all data from all groups together; i.e., rank the data from 1 to n ignoring group
membership. We denote as 𝑅𝑖𝑗 the rank of the value 𝑌𝑖𝑗 in the joint sample.

2. Let us denote the sum of all ranks in group s 𝑇𝑖 , 𝑖 = 1, … , 𝐼 . Clearly 𝑇1 + ⋯ + 𝑇𝐼 =𝑛(𝑛+1)
2 . The testing statistics is

𝑄 = 12
𝑛(𝑛 + 1)

𝐼
∑
𝑖=1

𝑇 2𝑖
𝑛𝑖

− 3(𝑛 + 1).

The random variable 𝑄 is approximately 𝜒2-distributed with 𝐼 − 1 degrees of free-
dom.
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3. Finally, the decision to reject or not the null hypothesis is made by comparing 𝑄 to
a critical value 𝑄𝛼 obtained from a table or a software for a given significance or 𝛼
level. If 𝑄 is greater than 𝑄𝛼 , the null hypothesis is rejected.

The test can be performed in the R environment using the function kruskal.test().
It can be used in two versions:

kruskal.test(x,g)

where x is a numeric vector of data values, or a list of numeric data vectors, and g a vector
or factor object giving the group for the corresponding elements of x. The other version
is:

kruskal.test(formula, data, subset,na.action)

where formula is a formula of the form response~group where response gives the
data values and group a vector or factor of the corresponding groups, data an optional
matrix or data frame containing the variables in the formula, subset is an optional
vector specifying a subset of observations to be used and na.action is a function which
indicates what should happen when the data contain NAs.

Example 7.2.3 Let us suppose, we have the following data on the scoring percentage of
basketball players by position

Position Percentage
Center 69.7 64.2 65.3 67.5 62.1
Forward 58.3 60.2 57.2 54.8 61.3 60.5
Guard 52.1 53.2 58.6 51.2 52.8

We want to know if there is any significant difference between the average average scoring
percentages on 3 different positions.

Solution: We will illustrate both versions of using the kruskal.test() function. For
the first version we must enter the numeric vectors of the percentages before we call the
function. This procedure is illustrated in the source code.

1 > x<-c(69.7,64.2,65.3,67.5,62.1)
2 > y<-c(58.3,60.2,57.2,54.8,61.3,60.5)
3 > z<-c(52.1,53.2,58.6,51.2,52.8)
4 > kruskal.test(list(x, y, z))
5
6 Kruskal-Wallis rank sum test
7
8 data: list(x, y, z)
9 Kruskal-Wallis chi-squared = 12.035, df = 2, p-value = 0.002435

Equivalently we can use the group variable, and proceed with the following source
code:

1 > g <- factor(rep(1:3, c(5, 6, 5)),
2 + labels = c("Center",
3 + "Forward",
4 + "Guard"))
5 > x <- c(x, y, z)
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6 > kruskal.test(x, g)
7
8 Kruskal-Wallis rank sum test
9

10 data: x and g
11 Kruskal-Wallis chi-squared = 12.035, df = 2, p-value = 0.002435

Let us note, we had to join all three vectors in one, to have the same length as the vector
of the factors g.

To illustrate the second version, with use of formula, we must prepare the data
frame, that is composed from the vector x and groups g. We can see it in the source code

1 > data<-data.frame(g,x)
2 > kruskal.test(x~g,data=data)
3
4 Kruskal-Wallis rank sum test
5
6 data: x by g
7 Kruskal-Wallis chi-squared = 12.035, df = 2, p-value = 0.002435

How we can see, all alternatives give the same p-value that is less than 0.05. So we
can reject the hypothesis, that players on all positions have the same scoring percentage.

7.3 Goodness of fit tests
In the data science, occasionally, we receive a dataset and we would like to know what
is the generative distribution for that dataset. Basically, the process of finding the right
distribution for a set of data can be broken down into four steps:

1. visualization, plot the histogram of data,
2. guess what distribution would fit to the data the best,
3. use some statistical test for goodness of fit,
4. repeat 2 and 3 if measure of goodness is not satisfactory.

The first task is relatively simple. In R, we can use hist() to plot the histogram of a
vector of data. This function was introduced in the section 5.3. The second task is a little
bit tricky. It is mainly based on our experience and your knowledge of statistical distri-
bution. Fortunately, how we can see on figure 5.40, we can plot the histogram together
with the supposed density. This make guessing the real distribution easier.

There are three well-known and widely use goodness of fit tests:

1. Chi Square test
2. Kolmogorov–Smirnov test
3. Cramér–von Mises criterion

All of the above tests are for statistical null hypothesis testing. For goodness of fit
we have the following hypothesis:

𝐻0: The data is consistent with a specified reference distribution.
𝐻1: The data is NOT consistent with a specified reference distribution
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7.3.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is popular test, probably due to its extreme simplicity. It
is used for asking two possible questions:

1. Are two sample distributions the same, or are they significantly different?
2. Does a particular sample distribution arise from a particular hypothesized distri-

bution?

The testing statistic is based on the difference between the empirical and theoretical
distribution functions or in the two sample case, on the difference between the corre-
sponding empirical distribution functions. So, in the one sample case, the Kolmogorov-
Smirnov statistic has form

𝐷𝑛 = sup
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|,

where 𝐹𝑛(𝑥) is the empirical distribution function. In the case of two samples with sizes
𝑛 resp. 𝑚, the Kolmogorov-Smirnov statistic takes the form

𝐷𝑛,𝑚 = sup
𝑥

|𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)|,

where 𝐹𝑛(𝑥) and 𝐹𝑚(𝑥) are empirical distribution functions.
To perform a one-sample or two-sample Kolmogorov-Smirnov test in R environment

we can use the ks.test() function. We illustrate its use in the following source code. As
the first step, we generate the numeric vector x as an sample from the gamma distribution
with the sample size 𝑛 = 1000. In the second step we add some normal distributed noise to
the data. Then we conduct the Kolmogorov-Smirnov test to verify, if the random variable
follow normal distribution.

1 > num_of_samples = 1000
2 > x <- rgamma(num_of_samples, shape = 10, scale = 3)
3 > x <- x + rnorm(length(x), mean=0, sd = .1)
4 > ks.test(x,"pnorm")
5
6 One-sample Kolmogorov-Smirnov test
7
8 data: x
9 D = 1, p-value < 2.2e-16

10 alternative hypothesis: two-sided

The resulting p-value is much less than 0.05, so we reject the hypothesis of a normal
distribution.

To illustrate the two sample version, we generate second sample y from the gamma
distribution. Then we again apply the ks.test() function.

1 > y<-rgamma(num_of_samples,shape=5,scale=1)
2 > ks.test(x,y)
3 Two-sample Kolmogorov-Smirnov test
4
5 data: x and y
6 D = 0.992, p-value < 2.2e-16
7 alternative hypothesis: two-sided

The resulting p-value is again extremely small, so we can reject the hypothesis, that
samples x and y come the same distribution from.
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7.3.2 Chi-square goodness of fit test

The chi square test for goodness of fit is a non-parametric test to test whether the ob-
served values that falls into two or more categories follows a particular distribution of
not. We can say that it compares the observed proportions with the expected chances.

For the chi-square goodness-of-fit computation, the data are divided into 𝑛 bins and
the test statistic is defined as

𝜒2 =
𝑛
∑
𝑖=1

(𝑋𝑖 − 𝐸𝑖)2
𝐸𝑖

,

where 𝑋𝑖 denotes number of observations for bin 𝑖 and 𝐸𝑖 an expected count for bin 𝑖,
asserted by the null hypothesis. The expected frequency 𝐸𝑖 is calculated by:

𝐸𝑖 = (𝐹(𝑌𝑢) − 𝐹(𝑌𝑙))𝑁
where 𝐹 is the cumulative distribution function for the probability distribution being
tested, 𝑌𝑢 and 𝑌𝑙 are the upper limit and the lower limit for class 𝑖, and 𝑁 is the sample
size.

If the null hypothesis holds, then the resulting statistic follows the chi-square dis-
tribution 𝜒2(𝑛 − 𝑐) with 𝑛 − 𝑐 degrees of freedom, where 𝑛 is the number of bins and 𝑐 is
the number of estimated parameters (including location and scale parameters and shape
parameters) for the distribution plus one.

In the R environment, The Chi-Square Goodness of Fit Test can then be performed
using the chisq.test() function, which has the following syntax.

chisq.test(x, p)

where x are the observed frequencies, represented numerically as a vector and p a nu-
merical vector of proportions to be expected.

Example 7.3.1 We expect, that every day, an equal number of clients enter a business, ac-
cording to a vendor. To test this theory, we record the number of customers who visit the
shop in a given week and discovers the following.

Monday: 260 customers, Tuesday: 245 customers, Wednesday: 270 customers, Thurs-
day: 250 customers, and Friday: 230 customers.
Let us verify the assumption, that customers come into the shop uniformly during the week.

Solution: First, we will prepare two arrays to store our observed frequencies and
expected customer proportions for each day. Because we expect uniformly distributed
data, the vector pwill contain five equal values that must add up to 1. Then we can apply
the chisq.test() function. Let us see the source code:

1 > visitors<-c(260,245,270,250,230)
2 > expect<-c(0.2,0.2,0.2,0.2,0.2)
3 > chisq.test(x=visitors,p=expect)
4
5 Chi-squared test for given probabilities
6
7 data: visitors
8 X-squared = 3.6653, df = 4, p-value = 0.4532

The p-value is large, so we can not reject the null hypothesis.
In the next example, we illustrate the use of the chi-square test to verify the Poisson

distribution.
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Example 7.3.2 The insurance portfolio includes 1,000 car accident insurance policies. In-
sured drivers reported from 0 up to 4 claims during the year as shown in the table below:

Number of claims 0 1 2 3 4
Number of reports 384 380 170 54 23

Let us verify, if the number of reported claims follow Poisson distribution.

Solution: At first we must enter the numeric vector of claims. To find the vector of
poissonian probabilities, we must estimate the value of the 𝜆 parameter. We find it as a
mean of the sample. As the next step, we have to generate the vector of probabilities of
the Poisson distribution. The sum of all values in the probability vector must be equal to
1, so we determine the last entry as the complementary value of the distribution function.
It means, that we interpret the last group as more than 3 reported claims. Then we can
use the chisq.test() function, how illustrates the source code.

1 > x<-c(384,380,170,54,23)
2 > lambda<-(0*x[1]+x[2]+2*x[3]+3*x[4]+4*x[5])/sum(x)
3 > p<-c(dpois(0,lambda),dpois(1,lambda),dpois(2,lambda),
4 dpois(3,lambda),1-ppois(3,lambda))
5 > chisq.test(x=x,p=p)
6 Chi-squared test for given probabilities
7
8 data: x
9 X-squared = 2.9718, df = 4, p-value = 0.5626

The p-value is much greater than 0.05, so we cannot reject the null-hypothesis, that num-
ber of reported claims follows the Poisson distribution.

Chi-square test of goodness-of-fit is not very suitable for verifying continuous dis-
tributions. Nevertheless, we illustrate its use for a test of the normality of a distribution.
Let us note that the presented approach is applicable as well for other kinds of continuous
distributions.

Let us suppose that 𝑋1, … , 𝑋𝑛 is a random sample. We want to test the hypothesis
𝐻0, this sample comes from the normal distribution 𝑁(𝜇, 𝜎2) with unknown parameters
𝜇 and 𝜎2. First we create class intervals

𝐽1 = (−∞; 𝑏1) , 𝐽2 = ⟨𝑏1; 𝑏2), 𝐽3 = ⟨𝑏2; 𝑏3), … , 𝐽𝑘−1 = ⟨𝑏𝑘−2; 𝑏𝑘−1), 𝐽𝑘 = ⟨𝑏𝑘−1; ∞),
where 𝑘 ≥ 4. The probability 𝑝 − 𝑖 that the random variable 𝑋𝑖 falls in the interval 𝐽𝑖 is
then determined by the values of the distribution function

𝑝𝑖 = 𝐹(𝑏𝑖) − 𝐹(𝑏𝑖−𝑖) for 𝑖 = 2, … , 𝑘 − 1
and 𝑝1 = 𝐹(𝑏1) resp. 𝑝𝑘 = 1 − 𝐹(𝑏𝑘−1). The test statistic then takes the form

𝜒2 =
𝑘
∑
𝑖=1

(𝑋𝑖 − 𝑛𝑝𝑖)2
𝑛𝑝𝑖

.

Since we have assumed that the parameters of the normal distribution are unknown, it
is necessary to determine their estimates. Therefore, the test statistic has a distribution
𝜒2(𝑛 − 3).
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To perform this test in the R environment, we apply the gofTest() function from
the EnvStats package. This function has several arguments that allow specification of
several alternatives to the goodness-of-fit test and also provides a wider range of distri-
butions that can be verified. Among the arguments of the gofTest() function, here are
at least a few of the most common ones:

• test is a character string defining which goodness-of-fit test to perform. If no
value is specified, the default is "sw" Shapiro-Wilk test. Other possibilities are
"chisq" for Chi-squared test, "ks" for Kolmogorov-Smirnov test, cmv for Cramer-
von Mises test, and some others (complete list we get using the help(gofTest).

• distribution is a character string denoting the distribution abbreviation. The
default value is "norm" representing the normal distribution. From the other distri-
butions let us mention at least "exp" for exponential distribution, "gamma" for the
Gamma distribution, logis for the logistic distribution, "unif" for the uniform
distribution, and "lnorm" for the logarithmic-normal distribution. The complete
list we can find in the help file of the Distribution.df.

• n.classes for the case when test="chisq", the number of class intervals into
which the observations are to be allocated.

• cut.points for the case when test="chisq", a vector of cutpoints that defines
the class intervals.

• est.arg.list is a list of arguments to be passed to the function estimating the
distribution parameters. For example, to use the most likely estimates we have to
set the value of the argument est.arg.list=list(method="mle").

• complete specification of all arguments one can find using the help(gofTest).

To illustrate how does the function gofTest()work, we generate the random sam-
ple from the normal distribution 𝑁(1, 10). The sample obtained is entered into the vector
x. Now we are ready tu run the gofTest() function. The whole process we see in the
following source code.

1 > library("EnvStats")
2 > x<-rnorm(1000,1,10)
3 > gofTest(x,distribution="norm",test="chisq",
4 est.arg.list=list(method="mle"))
5 Results of Goodness-of-Fit Test
6 -------------------------------
7 Test Method: Chi-square GOF
8 Hypothesized Distribution: Normal
9 Estimated Parameter(s): mean = 1.026369

10 sd = 9.965374
11 Estimation Method: mle/mme
12 Data: x
13 Sample Size: 1000
14 Test Statistic: Chi-square = 29.44
15 Test Statistic Parameter: df = 29
16 P-value: 0.4423341
17 Alternative Hypothesis: True cdf does not equal the
18 Normal Distribution.
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7.3.3 Cramér – von Mises criterion

The Cramér – von Mises criterion is a criterion used to verify the goodness of fit of a
cumulative distribution function 𝐹 compared to a given empirical distribution function
𝐹𝑛 , or for comparing two empirical distributions.

Let 𝑋1, … , 𝑋𝑛 is a random sample from the distribution with cumulative distribution
function 𝐹 . The Cramér – von Mises criterion works with sample 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)
which is oredered increasingly. The test statistic is defined as

𝑇 = 1
12𝑛 +

𝑛
∑
𝑖=1

[2𝑖 − 1
2𝑛 − 𝐹(𝑋(𝑖))]

2
.

If this value is larger than the tabulated value, then the hypothesis that the data came from
the assumed distribution can be rejected. Because we are working in the R environment,
we can rely on the implementation of critical values in this environment and we do not
need to work with tables.

In the R environment, we perform the Cramér – von Mises test again using the
gofTest() function from the Envstats package. In this case, we need to specify the
argument test="cvm ". The following source code illustrates the usage. First, we gen-
erate a vector x, which represents a random selection from a normal distribution. We
then perform a test. The high p-value does not allow us to reject the null hypothesis that
the sample comes from a normal distribution.

1 > library("EnvStats")
2 > x<-rnorm(1000,1,10)
3 > gofTest(x,distribution="norm",test="cvm",
4 est.arg.list=list(method="mle"))
5
6 Results of Goodness-of-Fit Test
7 -------------------------------
8 Test Method: Cramer-von Mises GOF
9 Hypothesized Distribution: Normal

10 Estimated Parameter(s): mean = 1.026369
11 sd = 9.960390
12 Estimation Method: mle/mme
13 Data: x
14 Sample Size: 1000
15 Test Statistic: W = 0.03370085
16 Test Statistic Parameter: n = 1000
17 P-value: 0.7923351
18 Alternative Hypothesis: True cdf does not equal the
19 Normal Distribution.

7.4 Chi-square test of independence
The Chi-square test of independence is a statistical hypothesis test used to determine
whether two categorical or nominal variables are likely to be related or not. As with
all prior statistical tests we need to define null and alternative hypotheses. To verify
independence, we set them as follows:

𝐻0 In the population, the two categorical variables are independent.
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𝐻1 In the population, the two categorical variables are dependent.

We assume that we have the data arranged into a contingency table that has 𝑟 × 𝑐
cells. Let us further denote by 𝑂𝑖𝑗 the number of empirical observations corresponding
to the cell in the 𝑖-th row and 𝑗-th column. Next, let us denote by 𝑛𝑖. = ∑𝑐

𝑘=1 𝑂𝑖𝑘 the sum
of the observations in the 𝑖-th row and 𝑛.𝑗 = ∑𝑟

𝑘=1 𝑂𝑖𝑘 the sum of the observations in the
𝑗-th column. Obviously

𝑛 =
𝑟
∑
𝑖=1

𝑛𝑖. =
𝑐
∑
𝑗=1

𝑛.𝑗 =
𝑟
∑
𝑖=1

𝑐
∑
𝑗=1

𝑂𝑖𝑗 ,

where 𝑛 is the sample size. We use the observed data to estimate the theoretical probabil-
ities of occurrence of individual values of categorical variables. Using the previous label,
we can estimate the probabilities 𝑝𝑖. = 𝑛𝑖.

𝑛 and 𝑝.𝑗 = 𝑛.𝑗
𝑛 . Assuming independence, we

determine the probability of simultaneous occurrence of the values of each categorical
variable as the product 𝑝𝑖𝑗 = 𝑝𝑖.𝑝.𝑗 . For the theoretical frequencies of occurrence of these
characters, we then get

𝑛𝑖𝑗 = 𝑛𝑝𝑖𝑗 =
𝑛𝑖.𝑛.𝑗
𝑛 .

The test statistic for the independence test is then based on the differences between the
theoretical and empirical frequencies and takes the form

𝜒2 =
𝑟
∑
𝑖=1

𝑐
∑
𝑗=1

(𝑂𝑖𝑗 − 𝑛𝑖𝑗)2
𝑛𝑖𝑗

=
𝑟
∑
𝑖=1

𝑐
∑
𝑗=1

(𝑂𝑖𝑗 − 𝑛𝑖.𝑛.𝑗
𝑛 )

2

𝑛𝑖.𝑛.𝑗
𝑛

.

If the zero hypothesis holds, this statistic follows the chi-squared distribution 𝜒2((𝑟 −
1)(𝑐 − 1).

Whenworking in the R environment, we can simply use the function chisq.test()
to perform the independence test, where we specify the contingency table as a vari-
able.We illustrate the procedure with the following example.

Example 7.4.1 We have observed students’ results on mathematics and statistics examina-
tions. The frequencies of the resulting grades are summarized in the table:

Mathematics
Statistics

A B C D E FX
A 5 8 10 6 3 2
B 8 7 12 8 3 1
C 9 4 15 10 7 4
D 2 3 8 9 15 10
E 2 2 7 12 15 18
FX 1 3 8 9 17 20

We want to test whether the resulting marks in mathematics and statistics are independent.

Solution: At first we must enter the values in the contingency table structure. Therefore
we enter the data as a matrix. Then we are ready to apply the chisq.test() function.
here is the simple source code:
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1 > data<-matrix(c(5,8,10,6,3,2,8,7,12,8,3,1,9,4,15,
2 10,7,4,2,3,8,9,15,10,2,2,7,12,15,18,1,3,8,9,17,20),ncol=6)
3 > chisq.test(data)
4
5 Pearson's␣Chi-squared␣test
6
7 data:␣␣data
8 X-squared␣=␣75.839,␣df␣=␣25,␣p-value␣=␣5.047e-07

We see very small p-value of the test, so we can reject the hypothesis, that resulting
marks in mathematics and statistics are independent.
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Chapter 8 157

Regression and linear models

8.1 Measures of the statistical dependence
The fundamental tool for measuring statistical dependence is the covariance or the cor-
relation coefficient. Let us assume, that (𝑥1, 𝑦1), ..., (𝑥𝑛 , 𝑦𝑛) is a random sample from two-
dimensional distribution. Let us denote

𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 , 𝑦 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 .

We define the covariance cov(𝑋 , 𝑌 ) by formula

cov(𝑋 , 𝑌 ) = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦).

The calculated value of the covariance is hard to interpret because it is highely influenced
by the values of the random variables themselves, and is not standardised in any way.
Therefore, wemove from covariance to standardised values – the correlation coefficients.
Given a series of 𝑛 measurements of the pair (𝑋𝑖 , 𝑌𝑖) indexed by 𝑖 = 1, … , 𝑛, the sample
correlation coefficient is defined as

𝑟𝑋,𝑌 = ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
(𝑛 − 1)𝑠𝑋 𝑠𝑌

,

where 𝑥 and 𝑦 are the sample means of 𝑋 and 𝑌 , and 𝑠𝑥 and 𝑠𝑦 are the unbiased estimates
of the standard deviations of 𝑋 and 𝑌 .

A non-parametric alternative to the correlation coefficient is Spearman’s rank cor-
relation coefficient. It is a measure of rank correlation (statistical dependence between
the rankings of two variables). It assesses how well the relationship between two vari-
ables can be described using a monotonic function. The Spearman correlation coefficient
is defined as the correlation coefficient between the rank variables.

For a sample of size 𝑛, the 𝑛 raw scores 𝑥𝑖 , 𝑦𝑖 are converted to ranks 𝑅(𝑥𝑖), 𝑅(𝑦𝑖), and
𝑟𝑆 is computed as

𝑟𝑆 =
cov(𝑅(𝑋), 𝑅(𝑌 ))

𝜎𝑅(𝑋)𝜎𝑅(𝑌 )
,

The Kendall rank correlation coefficient, commonly referred to as Kendall’s 𝜏 co-
efficient, is a statistic used to measure the ordinal association between two measured
quantities. Let (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) be a set of observations of the joint random variables
X and Y, such that all the values of 𝑥𝑖 and 𝑦𝑖 are unique (ties are neglected for simplicity).



Any pair of observations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), where 𝑖 < 𝑗, are said to be concordant if the
sort order of (𝑥𝑖 , 𝑥𝑗) and (𝑦𝑖 , 𝑦𝑗) agrees: that is, if either both 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 holds
or both 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 ; otherwise they are said to be discordant. The Kendall 𝜏
coefficient is defined as:

𝜏 = number of concordant pairs − number of discordant pairs

(𝑛2)
.

An explicit expression for Kendall’s rank coefficient is

𝜏 = 2
𝑛(𝑛 − 1) ∑𝑖<𝑗

sgn(𝑥𝑖 − 𝑥𝑗)sgn(𝑦𝑖 − 𝑦𝑗).

Once we are working in the R environment, we can compute the covariance or cor-
relation coefficient using the cov() resp. cor() function. We illustrate their use in the
example with the build up data set faithful. It consists of a collection of observations
of the Old Faithful geyser in the Yellowstone National Park. There are two observation
variables in the data set. The first one, called eruptions, is the duration of the geyser
eruptions. The second one, called waiting, is the length of waiting period until the next
eruption. Here we can see the corresponding source code:

1 > cov(faithful$eruptions,faithful$waiting)
2 [1] 13.97781
3 > cor(faithful$eruptions,faithful$waiting)
4 [1] 0.9008112

At this point it is important to note that for the cov() and cor() functions to work
correctly, it is necessary that both vectors have the same length. In addition, if either
vector contains unknown values, the use=pairwise argument must be used. Otherwise,
the result would also contain an unknown value. Let us see simple example:

1 > x <-c(1,2,3,4,5)
2 > y <-c(1,2 3)
3 > y[5] <-5 # to assure same length
4 > cov(x,y) # y[4] is unknown value NA
5 [1] NA
6 > cov(x,y,use="pairwise")
7 [1] 2.916667

Alternatively, we can use as the function argument only the data set name, and we
obtain the result in the form of covariance resp. correlation matrix, how illustrate the
following source code:

1 > cov(faithful)
2 eruptions waiting
3 eruptions 1.302728 13.97781
4 waiting 13.977808 184.82331
5 > cor(faithful)
6 eruptions waiting
7 eruptions 1.0000000 0.9008112
8 waiting 0.9008112 1.0000000

In order to get the Spearman’s rank correlation coefficient or the Kendall 𝜏 , we have to
specify the argument method in the function cov(), resp. cor. We can see it in the next
listing:
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1 > cor(faithful,method="spearman")
2 eruptions waiting
3 eruptions 1.0000000 0.7779721
4 waiting 0.7779721 1.0000000
5 > cor(faithful,method="kendall")
6 eruptions waiting
7 eruptions 1.0000000 0.5747674
8 waiting 0.5747674 1.0000000

Let us also note something about the covariance matrix and correlation matrix. Co-
variance matrix is a square matrix that displays the variance exhibited by elements of
data sets and the covariance between a pair of data sets. The diagonal elements repre-
sent the variance and the off-diagonal elements represent the covariance. If we examine
dependencies between multiple random variables 𝑋1, … , 𝑋𝑛 , the covariance matrix has
the following structure:

⎛
⎜
⎜
⎜
⎝

𝑠2𝑋1 cov(𝑋1, 𝑋2) … cov(𝑋1, 𝑋𝑛)
cov(𝑋2, 𝑋1) 𝑠2𝑋1 … cov(𝑋2, 𝑋𝑛)

⋮ ⋮ ⋱ ⋮
cov(𝑋𝑛 , 𝑋1) cov(𝑋𝑛 , 𝑋2) … 𝑠2𝑋𝑛

⎞
⎟
⎟
⎟
⎠

Similarly, the correlation matrix is a square matrix, whose elements on position (𝑖, 𝑗) are
the correlations coefficients between the 𝑖-th and 𝑗-th random variables.Thus the diagonal
entries are all identically unity. The structure of the correlation matrix looks like this:

⎛
⎜⎜⎜
⎝

1 𝑟𝑋1𝑋2 … 𝑟𝑋1,𝑋𝑛
𝑟𝑋2,𝑋1 1 … 𝑟𝑋2,𝑋𝑛

⋮ ⋮ ⋱ ⋮
𝑟𝑋𝑛 ,𝑋1 𝑟𝑋𝑛 ,𝑋2 … 1

⎞
⎟⎟⎟
⎠

We illustrate the calculation of the covariance and correlation matrices using the
built-in data set trees. This data set provides measurements of the diameter, height and
volume of timber in 31 felled black cherry trees. Note that the diameter (in inches) is
erroneously labelled Girth in the data.

1 > cov(trees)
2 Girth Height Volume
3 Girth 9.847914 10.38333 49.88812
4 Height 10.383333 40.60000 62.66000
5 Volume 49.888118 62.66000 270.20280
6 > cor(trees)
7 Girth Height Volume
8 Girth 1.0000000 0.5192801 0.9671194
9 Height 0.5192801 1.0000000 0.5982497

10 Volume 0.9671194 0.5982497 1.0000000

Let us conclude this section by stating that all values that enter into the calculation
of the covariance matrix must be numerical. If they were not, an error would occur. We
can illustrate this with the built-in data set iris. This data set contains measurements
on 4 different attributes (in centimetres) for 50 flowers from 3 different species. There is
one categorical variable Species, so the cov() function produces an error, how we can
see from the source code:
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1 > cov(iris)
2 Error: is.numeric(x) || is.logical(x) is not TRUE

To get the covariance matrix, we have to exclude the last variable from the computation.
The source code then looks like this:

1 > cov(iris[-c(5)])
2 Sepal.Length Sepal.Width Petal.Length Petal.Width
3 Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
4 Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
5 Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
6 Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

8.2 Correlation test
Using a random sample, we can determine the sample correlation, but not the correlation
coefficient of the whole population. The sample correlation coefficient 𝑟 is our estimate
of the unknown population correlation coefficient. The hypothesis test lets us decide
whether the value of the population correlation coefficient 𝜌 is ”close to zero” or ”signif-
icantly different from zero”. The null hypothesis and alternative hypothesis then have
the form:

𝐻0: 𝜌 = 0.
𝐻1: 𝜌 ≠ 0.
The null hypothesis means in words that the correlation coefficient does not signif-

icantly differ from zero and there is no significant linear relationship between 𝑋 and 𝑌
in the population. In contrast, the alternative hypothesis states the population correla-
tion coefficient differs significantly from zero. There is a significant linear relationship
between 𝑋 and 𝑌 in the population.

Let (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) to be a random sample from the two dimensional normal dis-
tribution with positive variances and correlation coefficient 𝜌 ∈ (−1; 1). If the hypothesis
𝜌 = 0 holds, then the random variable

𝑇 = 𝑟
√1 − 𝑟2

√𝑛 − 2

follows the Student’s distribution 𝑡(𝑛 − 2).
In the R environment, the cor.test() function is implemented to test the signif-

icance of the correlation coefficient. It returns both the correlation coefficient and the
significance level (or 𝑝-value) of the correlation. This function can be used for all three
types of correlation coefficient determining the method argument. We illustrate its use
in the following source codes. We use again the build up dataset trees.

1 > cor.test(trees$Girth,trees$Volume)
2
3 Pearson's␣product-moment␣correlation
4
5 data:␣trees$Girth␣and␣trees$Volume
6 t␣=␣20.478,␣df␣=␣29,␣p-value␣<␣2.2e-16
7 alternative␣hypothesis:␣true␣correlation␣is␣not␣equal␣to␣0
8 95␣percent␣confidence␣interval:
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9 ␣0.9322519␣0.9841887
10 sample␣estimates:
11 ␣␣␣␣␣␣cor
12 0.9671194

To perform the test for the Spearman’s rank correlation we submit also the method:

1 > cor.test(trees$Girth,trees$Volume,method="spearman")
2
3 Spearman's␣rank␣correlation␣rho
4
5 data:␣␣trees$Girth␣and␣trees$Volume
6 S␣=␣224.61,␣p-value␣<␣2.2e-16
7 alternative␣hypothesis:␣true␣rho␣is␣not␣equal␣to␣0
8 sample␣estimates:
9 ␣␣␣␣␣␣rho

10 0.9547151

Similarly we can perform the test for the Kendall’s 𝜏 :
1 > cor.test(trees$Girth,trees$Volume,method="kendall")
2
3 Kendall's␣rank␣correlation␣tau
4
5 data:␣␣trees$Girth␣and␣trees$Volume
6 z␣=␣6.5313,␣p-value␣=␣6.519e-11
7 alternative␣hypothesis:␣true␣tau␣is␣not␣equal␣to␣0
8 sample␣estimates:
9 ␣␣␣␣␣␣tau

10 0.8302746

8.3 Linear regression
We can characterise the linear regression as a linear approach for modelling the rela-
tionship between a scalar response and one or more explanatory variables (also known
as dependent and independent variables). The case of one explanatory variable is called
simple linear regression; for more than one, the process is calledmultiple linear regres-
sion.

In the case of simple linear regression we work with regression model with a single
explanatory variable. That is, it concerns two-dimensional sample points with one in-
dependent variable and one dependent variable. The model with general regression line
then has the form

𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖 , 𝑖 = 1, … , 𝑛.
Let as assign 𝑌 = 1

𝑛 ∑
𝑛
𝑖=1 𝑌𝑖 and 𝑥 = 1

𝑛 ∑
𝑛
𝑖=1 𝑥𝑖 . Using the least square method we obtain

the estimates of the regression coefficients

𝑏 = ∑𝑛
𝑖=1 𝑋 − 𝑖𝑌𝑖 − 𝑛𝑥𝑌
∑𝑛

𝑖=1 𝑥2𝑖 − 𝑛𝑥2
, 𝑎 = 𝑌 − 𝑏𝑥.

To state the estimates of the regression coefficients in the R environment we use the
function lm() whose syntax is
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Figure 8.1: The scatter plot and linear re-
gression line of the Girth and Volume
variables from the dataset trees.
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Figure 8.2: The scatter plot and “pure”
linear regression line of the Girth and
Volume variables from the dataset trees.

lm(resp~var1,dataset)

where

• resp is the response variable,
• var1 is the explanatory variable,
• dataset is the name of the input data frame.

We can illustrate its use on the case of the dataset trees and find the linear model of the
volume as variable dependent on the girth.

1 > lm(Volume~Girth,trees)
2
3 Call:
4 lm(formula = Volume ~ Girth, data = trees)
5
6 Coefficients:
7 (Intercept) Girth
8 -36.943 5.066

So, we see that the linear relation between the volume 𝑉 and girth 𝐺 has the form

𝑉 = −36.943 + 5.066𝐺.
We can also illustrate the linear regression graphically. At first we prepare the scatter
plot including the observed data. The regression line we then add to the graph using the
function abline(). It has in our case the form.

abline(lm(Volume~Girth,trees),col="red")

The resulting graph we see in the figure 8.1. Let us note, that in case, when we want to
model the “pure” linear dependency (means straight line passing through origin) 𝑌𝑖 = 𝛽𝑥𝑖 ,
we have to apply the lm() function with the syntax:
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lm(resp~-1+var1,dataset)

Applying this approach on the trees dataset, we get:

1 > lm(Volume~-1+Girth,trees)
2
3 Call:
4 lm(formula = Volume ~ -1 + Girth, data = trees)
5
6 Coefficients:
7 Girth
8 2.421

That mean, the equation of the “pure” linear dependency among the Girth and volume
is

𝑉 = 2.421𝐺.
However, how we can see on the figure 8.2, this approximation is much worse then gen-
eral linear relation. This example also shows that we need some indicators of the quality
of the fitting by the prediction model. The commonly used indicators, implemented also
in R, are:

• Coefficient of determination 𝑅2. This coefficient states the proportion of the vari-
ation in the dependent variable that is explained by the model.

• Confidence test for the model coefficients. The null hypothesis states, that he coef-
ficient equals zero. If we cannot reject this hypothesis, it is appropriate to exclude
the variable from the model.

• F-test, that identifies if the model is significantly better prediction than the simple
average.

Let us assume, a data set has 𝑛 values 𝑥1, … , 𝑥𝑛 , each associated with a fitted (or
modelled, or predicted) value 𝑓1, … , 𝑓𝑛 . We define the residuals as 𝑒𝑖 = 𝑥𝑖 − 𝑓𝑖 . The most
general definition of the coefficient of determination is

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

where

𝑆𝑆𝑟𝑒𝑠 =
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑓𝑖)2 =
𝑛
∑
𝑖=1

𝑒2𝑖 ,

is the so called residual sum of squares, and

𝑆𝑆𝑡𝑜𝑡 =
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2,

is the total sum of squares.
In order to obtain information about the quality of fitting by the regression model

in the R environment, it is necessary to store the output of the function \lm in some
variable. Then the summary() function can be applied to this output. Thus, we obtain
significant quantiles of the error distribution as well as the desired indicators of the fitting
quality. We illustrate it on the previous dependency of Volume on the Girth of trees.
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1 > model<-lm(Volume~Girth,trees)
2 > summary(model)
3
4 Call:
5 lm(formula = Volume ~ Girth, data = trees)
6
7 Residuals:
8 Min 1Q Median 3Q Max
9 -8.065 -3.107 0.152 3.495 9.587

10
11 Coefficients:
12 Estimate Std. Error t value Pr(>|t|)
13 (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
14 Girth 5.0659 0.2474 20.48 < 2e-16 ***
15 ---
16 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
17
18 Residual standard error: 4.252 on 29 degrees of freedom
19 Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
20 F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

Descriptive statistics of residual errors are given as the first result. The second part of
the output gives the estimates of the coefficient of the regression line and the resulting
values of the null hypothesis test. Here we observe very small 𝑝-values. This means that
we can reject the null hypothesis at a high confidence level. Last are the fitting quality
indicators. Here we see that the value of the residual error is 4.252 and the coefficient of
determination is 0.9353. This result means that the regression model explains 93.53 % of
the volatility. Finally, on the last line we see the results of the F-test. Again, this shows
a very small 𝑝-value, which confirms that the model has significantly better predictive
ability than the simple mean estimation.

If we have the result stored in a variable, we can use the function coef() to get the
coefficients of the regression line. The confint() function then provides confidence in-
tervals for these coefficients. The default confidence level is 0.95, but this can be changed
by specifying the argument level=value. The use of both functions is illustrated in the
source code.

1 > coef(model)
2 (Intercept) Girth
3 -36.943459 5.065856
4 > confint(model,level=0.99)
5 0.5 % 99.5 %
6 (Intercept) -46.21910 -27.667821
7 Girth 4.38399 5.747723

The function lm() can also be used for the case of polynomial regression. The
regression function thus goes into the form

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀.
The higher powers of the explanatory variable 𝑥 in the function lm() are then encap-
sulated in the function I() due to the special meaning of the symbols ^ and *. That
means the arguments of the lm() function are resp, var, I(var^2), I(var^3), etc.,
and dataset. The following source code illustrates the quadratic regression function for
the example with trees:
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Figure 8.3: The scatter plot and quadratic
regression curve of the Girth and Volume
variables from the dataset trees.
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Figure 8.4: The scatter plot and exponen-
tial regression curve of the women height
and weight.

1 > lm(Volume~Girth+I( Girth^2),trees)
2
3 Call:
4 lm(formula = Volume ~ Girth + I(Girth^2), data = trees)
5
6 Coefficients:
7 (Intercept) Girth I(Girth^2)
8 10.7863 -2.0921 0.2545

Therefore, the regression function has form

𝑉 = 10.7863 − 2.0921𝐺 + 0.2545𝐺2.
The result of the quadratic regression is graphically presented on figure 8.3. Let

us note, that the graph of the regression curve is added to the plot using the curve()
function. As her obligatory arguments are entered the regression function and add=T for
adding the curve into the actual graph. The general form of the multi linear regression
function with multiple explanatory variables is

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯𝛽𝑛𝑥𝑛 + 𝜀.
Also in this situation, we use the functions lm() to estimate the regression coefficients
in the R environment. In this case, however, we specify the necessary number of ex-
planatory variables var1, var2 etc. In a multi linear regression, we can also take into
account the interactions between the explanatory variables. These interactions are then
characterized by different separators of the variables:

+ separates explanatory variables,
: denotes interaction between variables,
* denotes all possible interactions, for example x*y*z expands to
x+y+z+x:y+x:z+y:z+x:y:z,
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̂ interactions up to the given grade, for example (x+y+z)^2 expands to
x+y+z+x:y+x:z+y:z.

To illustrate, we use the built-in dataset mtcars, which contains data on several car
brands. We are looking for the dependence of consumption on the number of of cylin-
ders, weight and power of the vehicle. These data are in the dataset assigned as mpg
denoting the number of miles per gallon, cyl number of cylinders, wt for the weighth of
the vehicle and hp the number of the horse power. We obtain estimates of the coefficients
of the regression function using the following source code.

1 > lm(mpg~cyl+wt+hp,data=mtcars)
2
3 Call:
4 lm(formula = mpg ~ cyl + wt + hp, data = mtcars)
5
6 Coefficients:
7 (Intercept) cyl wt hp
8 38.75179 -0.94162 -3.16697 -0.01804

So, the corresponding model is

𝑚𝑝𝑔 = 38.75 − 0.94𝑐𝑦𝑙 − 3.17𝑤𝑡 − 0.02ℎ𝑝.
Alternatively, we can look for the dependence of consumption onmass and power, taking
into account their interaction with each other. In this case, we modify the source code to
the following form:

1 > lm(mpg~wt+hp+wt*hp,data = mtcars)
2
3 Call:
4 lm(formula = mpg ~ wt + hp + wt * hp, data = mtcars)
5
6 Coefficients:
7 (Intercept) wt hp wt:hp
8 49.80842 -8.21662 -0.12010 0.02785

The corresponding model is

𝑚𝑝𝑔 = 49.81 − 8.22𝑤𝑡 − 0.12ℎ𝑝 + 0.03𝑤𝑡 ⋅ ℎ𝑝.
In the R environment, we can apply transformation functions directly in the linear model
that is the output of the lm() function. Thus we can obtain the coefficients for the non-
linear form of the regression model. Using the dataset womenwe can determine the expo-
nential dependence of the weight on the height. This data set gives the average heights
and weights for American women aged 30–39. Its format is data frame with 15 observa-
tions on 2 variables: height in inches andweight in pounds. To determine the exponential
dependence, we need to transform the variable weight using a logarithmic function. The
source code for the calculation will then look like this:

1 > lm(log(weight)~height,data=women)
2
3 Call:
4 lm(formula = log(weight) ~ height, data = women)
5
6 Coefficients:
7 (Intercept) height
8 3.27508 0.02518
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The resulting exponential regression function then takes the form

𝑤 = e3.27508+0.02518⋅ℎ.
The graphical presentation of the result we can see on figure 8.4.

The implementation of lm() in the R environment allows factor variables to be
included in the model. We illustrate this by modelling a person’s height as a function of
arm span. We use eye colour as the factor variable. For this purpose, we first create a
short data file people.csv with the following contents:

Subject,Eye Colour,Height,Hand Span,Sex,Handedness,Height Cat
1,Brown,186,210,Male,R,Tall
2,Green,182,220,Male,R,Tall
3,Brown,147,167,Female,NA,NA
4,Green,157,180,Female,L,Short
5,Brown,170,193,Male,R,Medium
6,Blue,169,190,Female,L,Medium
7,Brown,174,217,Male,R,Medium
8,Blue,173,211,Male,R,Medium
9,Blue,166,193,Female,R,Medium
10,Blue,166,178,Female,R,Medium
11,Brown,163,223,Male,R,Medium
12,Blue,184,225,Male,R,Tall
13,Blue,176,214,Male,NA,Medium
14,Blue,183,218,Male,R,Tall
15,Green,160,190,Female,NA,Short
16,Brown,173,196,Male,R,Medium

After loading this file into the people variable, we use the class() function tomake sure
that the variable is of type factor. We then build the desired model using the following
source code:

1 people<-read.csv("people.csv")
2 > class(people$Eye.Colour)
3 [1] "factor"
4 > lm(Height~Hand.Span+Eye.Colour,people)
5
6 Call:
7 lm(formula = Height ~ Hand.Span + Eye.Colour, data = people)
8
9 Coefficients:

10 (Intercept) Hand.Span Eye.ColourBrown Eye.ColourGreen
11 82.8902 0.4456 -3.6233 -4.1924

Depending on the eye colour, we obtained the following height prediction models of the
height ℎ in dependence on the hand span ℎ𝑠 :

ℎ = 82.89 + 0.45 ⋅ ℎ𝑠 for persons with blue eyes
ℎ = 82.89 + 0.45 ⋅ ℎ𝑠 − 3.6233 for persons with brown eyes
ℎ = 82.89 + 0.45 ⋅ ℎ𝑠 − 4.1924 for persons with green eyes

The blue eye colour was used as the referral value in the previous computation. This can
be changed using the relevel() function. Its syntax is
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dataset$variable<-relevel(dataset$variable,"reflevel"),

where reflevel is the new referral value. In the previousmodel we can set as the referral
value of the eye colour as green. Then we use the following source code:

1 > people$Eye.Colour<-relevel(people$Eye.Colour,"Green")
2 > lm(Height~Hand.Span+Eye.Colour,people)
3
4 Call:
5 lm(formula = Height ~ Hand.Span + Eye.Colour, data = people)
6
7 Coefficients:
8 (Intercept) Hand.Span Eye.ColourBlue Eye.ColourBrown
9 78.6978 0.4456 4.1924 0.5690

The corresponding prediction models are then changed as follows:

ℎ = 78.6978 + 0.4456 ⋅ ℎ𝑠 for persons with green eyes
ℎ = 78.6978 + 0.4456ℎ𝑠 + 0.5690 for persons with brown eyes
ℎ = 78.6978 + 0.4456ℎ𝑠 + 4.1924 for persons with blue eyes.
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