
Mendel University in Brno

Algorithmization and Programming
in Lua

Study text

Tomáš Hála
Mendel University in Brno

Project: Innovative Open Source Courses
for Computer Science Curriculum

24. 6. 2022

Reviewer: Ing. Pavel Stříž, Ph.D.
Project: Innovative Open Source Courses for Computer Science Curriculum
© Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
ISBN 978-80-7509-893-1 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-893-1

Open Access. This book is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International License, CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/)

Project: Innovative Open Source Courses for Computer Science Curriculum

This material teaching was written as one of the outputs of the project “Innovative Open
Source Courses for Computer Science Curriculum”, funded by the Erasmus+ grant no.
2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian University
of Technology in Szczecin (Poland) and is implemented in partnership with Mendel Uni-
versity in Brno (Czech Republic) and University of Žilina (Slovak Republic). The project
implementation timeline is September 2019 to December 2022.

Project information
Project was implemented under the Erasmus+.
Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564
Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action Type: KA203 – Strategic Partnerships for higher education

Consortium
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNĚ
ŽILINSKÁ UNIVERZITA V ŽILINE

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication reflects the views
only of the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019–2022. The content is Copyrighted and distributed
under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

4

Acknowledgments
I would like to thank Pavel Stříž for his valuable comments and suggestions for

the future improvement of this text.

5

Contents

1 Introduction 9

2 Algorithms and programming languages 11
2.1 Algorithmization and programming 11
2.2 Programming language and machine code 12

3 Tools for creating programs in Lua 13
3.1 Linux command line 13
3.1.1 Scripts 14
3.1.2 Precompilation 15
3.1.3 Online tools 15

4 Elements of the programming language Lua 18
4.1 Reserved words 18
4.2 Identifiers 19
4.3 Numbers 19
4.4 Strings 21
4.5 Separators 21
4.6 Comments 21

5 Variables, data types, expressions 23
5.1 Variables and Data Types 23
5.2 Brief overview of Data Types in Lua 24
5.3 Expressions 25
5.4 Operations and operators 25
5.4.1 Operation with logical values 26
5.4.2 Relational operations 27
5.4.3 Operations with numeric data type 27
5.4.4 Rounding functions 28
5.4.5 Bitwise operations with integer numbers 29
5.4.6 Operation with string data type 30
5.4.7 Detection of data type 30
5.4.8 Conversion between number and string 31
5.5 Expression evaluation and precendence of operators 32
5.5.1 Expression evaluation a precedence of operators 32

6 Procedures for data input and output 35

6

6.1 Read procedure io.read 36
6.2 Procedure io.write 37
6.3 The differnce between io.write and print 37
6.4 Output Information Formatting 38

7 Control structures of Lua 41
7.1 Conditional command 41
7.1.1 Conditions and command if 41
7.1.2 Command if+elseif 43
7.2 Loops 44
7.2.1 Loop while 45
7.2.2 Loop repeat/until 46
7.2.3 Loop for – numeric 48
7.2.4 Loop for – generic 48
7.3 Examples to practice loops 49
7.3.1 Reading from a text file 50
7.3.2 Reading the input series to a stop value 50
7.3.3 Read input data to the end of the input file 51

8 Strings and string library 56
8.1 Conversion between characters and ordinal values 56
8.2 String manipulation 57
8.2.1 Upper and lower case letters 57
8.2.2 Reverse and replication 58
8.3 Search and replace functions 58
8.3.1 Simple search 58
8.3.2 Search with classes 59
8.3.3 Getting a substring using indices 60
8.3.4 Getting a substring using matching function 60
8.3.5 Captures 61
8.3.6 Substitution 63
8.3.7 Getting the list of matches 63
8.4 Other functions 64
8.5 Shortened syntax 64
8.6 UTF-8 encoding 65

9 Tables 67
9.1 Table initialisation – constructor 67
9.2 Table as an 1D array (vector) 68
9.3 Table: insert, remove, number of elements, list of elements 69
9.4 Solved exercises 70
9.5 Sorting 71

7

9.6 Table as a hash 72
9.7 Searching in an array 73
9.8 Conversion array to hash 75
9.9 Array and hash together 76
9.10 Table as an 2D array (matrix) 76
9.10.1 Initialization, constructor 76
9.10.2 Displaying values of a two-dimensional array 77
9.10.3 Algorithms for matrices 77
9.10.4 A more general way to display values of a table 78
9.11 Table as a set 79

10 Functions (subroutines) 81
10.1 Declaration and parameters 81
10.2 Recursion and recursive functions 82
10.3 Function as a data type 83
10.4 Iterators and closures 83
10.4.1 User iterators 83

11 Modules (libraries) 87
11.1 How to create own library 87
11.2 Joining the library 88
11.3 Inspect 90

12 Abstract Data Types 91
12.1 Axiomatic description for ADT Queue 91
12.2 Implementation of the ADT Queue 91
12.3 Interface for a user 92
12.4 Module for set operations 93
12.5 Module for set operations with a metatable 95

13 Files 96
13.1 Difference between text and binary files 96
13.2 Access to a file 97
13.3 Open 97
13.4 Close 98
13.5 Data reading methods 98
13.6 Processing of text files – solved examples 99
13.7 Binary files 100

14 Communication with OS 102
14.1 Library os 102
14.2 Reading parameters from the command line 102

8

14.3 Environmental variables 103
14.4 Date and time 103
14.5 Executing programms 104

15 Use of Lua in Applications 105
15.1 Lua in ConTEXt 105
15.1.1 Small multiplication table 105
15.1.2 Use of data structures 106

References 109

9

1 Introduction

The Lua programming language is not entirely new, but it has only become more
widely known and widespread in the last 15 years, mainly because of its ease of use
in computer game development.

What is Lua1?
It is a programming language created in 1993 by the group of authors – Roberto

Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes, members of the
Computer Graphics Technology Group Computer Graphics Group) at the Pontifical
University of Rio de Janeiro, Brazil.

Their goal was to create a simple language with minimal system requirements,
portable between different platforms and, most importantly, easily embedded into
other applications.

These advantageous features, in addition to the aforementioned use in game devel-
opment, have caused the Lua programming language ‘to become widely used in all
kinds of industrial applications, such as robotics, literate programming, distributed busi-
ness, image processing, extensible text editors, Ethernet switches, bioinformatics, finite-
element packages, web development, and more.’ (Ierusalimchy, de Figueiredo and Celes,
[2007]).

How to learn a programming language? While there are manuals on the mar-
ket dealing with this language, but they are not usually freely available. Internet
resources, whether the lua.org website or other servers, offer resources more of a
documentary nature, which in their scope or content will be appreciated by more
experienced users, but cannot fully meet the needs of beginner users.

This textbook has therefore been written in an effort to provide this particular
group of novice users an initial basic overview of Lua’s capabilities, along with a
more detailed explanation of the generally used terms and concepts.

The programming language Lua is available in many versions in various reposit-
ories. To try the examples in this textbook, you need version 5.3 or higher.

The text covers the Lua programming language, describing its basic features –
data types, commands, structures, and appropriate procedures of their use. However,
it should not be considered as a textbook only of programming language, since mere
knowledge of the elements of a programming language does not effective use of the
computer. Therefore, the emphasis in this textbook is on the correct application of
the principles of algorithmization and on the knowledge and use of basic algorithms.

1 The word lua is taken from Portuguese and means moon

10

The purpose of this book is to provide guidance on how to create useful, yet simple
programs, especially for their own use, i.e. programs with easy control.

In the explanation in this text, it is assumed that the reader already has the basic
experience with operating computer software, especially with operating system and
the editor.

In the list of references, the reader will find a list of sources that can be recom-
mended for further study of programming language Lua. From these sources, some
examples have also been taken.

Colour notation:

Codes in Lua.

Incorrect codes in Lua which you should avoid.

Input or output data for the related programs

Bash commands or scripts

Source codes for ConTeXt

11

2 Algorithms and programming languages

Before one begins to create a program, it is not only necessary to be clear about the
issues involved, but it is also advisable to be familiar with the terminology.

Therefore, this chapter will be devoted to an overview and explanation of terms
that the user encounters when creating programs.

Algorithm is a procedurewe can use to solve a given problem. Any good algorithm
must satisfy certain properties, i.e. must be:

• unambiguous (deterministic),
• finite (resultative), i.e. always leading to certain results,
• general , i.e. applicable to the solution of a given problem using any admiss-
ible data,

• repeatable, i.e. always leading to the same results with the same input data.

In practice, it is also recommended that the algorithm be comprehensible and
clear, allowing corrections and modifications to be made easily.

A number of differentmeans are available for expressing the algorithm. Algorithm
can thus be expressed:

• verbally – in natural language,
• graphically – flowchart or structure chart,
• mathematically – a relationship between quantities, a system of equations,
matrices,

• programming language.

All methods of expressing an algorithm allow a person to perform a specified
action (calculate, search, sort, etc.). Only one of them – the programming language –
is comprehensible to a computer under certain circumstances.

In this text, we will prefer to describe the algorithm in words. Some algorithms
will be expressed mathematically, since mathematical notation is generally accepted
and familiar way of symbolic expression.

2.1 Algorithmization and programming

The activity leading to construction of an algorithm that satisfies the above men-
tioned properties is called algorithmization. Its input of algorithmization is a prob-
lem and the algorithm is the output. In algorithmization, we can find multiple

12

procedures to solve one problem, ie. multiple algorithms.
If we have a good algorithm, we can do another activity, which is called program-

ming. The input here is the algorithm and the output is a computer program. A
program is an algorithm expressed in a programming language. In program-
ming, we can write the chosen algorithm in various ways to get multiple programs
that produce the same results.

This is a very important point: if you solve different problems in a collective, each
of you may have more or less different solutions, and all of them may be correct.
This is perfectly fine, because both algorithmization and programming are creative
activities: they depends on intellect, skill, knowledge and sometimes on intuition.

2.2 Programming language and machine code

A programming language, however, is only used to write a program. In fact, the
programmust be translated into a language that it understands the computer, namely
the processor, i.e. into machine codemachine code. The conversion from program-
ming language to machine code is called compilation.

If we work on a computer with a particular programming language, it means that
there is a program on that computer that allows to compile the program we have
created into machine code. Such a program is called compiler. The fact that the
compiler is a program is very important for us. A program written in a program-
ming language must be written very precisely and according to a set of rules of that
programming language.

In addition, interpreted programs are also very popular. This means that they
are executed line by line or command by command. Here the program as a not trans-
lated as a whole but partial sections of code are executed sequentially by a program
called an interpreter.

For the Lua programming language, there are both interpreter programs lua and
compiler luac. Both will be more explained in the next chapter.

13

3 Tools for creating programs in Lua

Program development tools may vary depending on the operating system. Besides
the basic and simple command line work, there are various integrated development
environments. There are also online tools available at the internet.

3.1 Linux command line

Run the program lua on the command line to interpret the code. If not present,
install it using:

sudo apt install lua # Ubuntu, Mint atd.
sudo yum install lua # CentOS, Fedora atd.

Package lua is a virtual package provided by:
 lua5.3:i386 5.3.3-1ubuntu0.18.04.1
 lua5.3 5.3.3-1ubuntu0.18.04.1
 lua5.2:i386 5.2.4-1.1build1
 lua5.1:i386 5.1.5-8.1build2
 lua50 5.0.3-8
 lua5.2 5.2.4-1.1build1
 lua5.1 5.1.5-8.1build2
You should explicitly select one to install.

If the installer offers more than one version, we recommend you to use the latest
one. After running lua, we will see:

your_os_prompt: lua
Lua 5.3.3 Copyright (C) 1994-2016 Lua.org, PUC-Rio
>

Now we can write commands after the prompt >:

14

Figure 3.1 Our first program in Lua

your_prompt: lua
Lua 5.3.3 Copyright (C) 1994-2016 Lua.org, PUC-Rio
> a = 2
> b = 3
> print (a+b)
5
> =a+b
5

In addition to print, the most commonly used tool for displaying result, you can
also use shortcut – the character =, which will also display the result of the expression.
Note that the equal sign, instead of the print, cannot be used in batch processing.

We can exit the program correctly with the key Ctrl-D or interrupt the run with
Ctrl-C.

3.1.1 Scripts
The above solution is not convenient for longer programs, because when repeatedly
running it is necessary to write everything again.

That is why we prefer to use a text editor (see the Figure 3.1) to create a longer
program. Then program save on a file can be run as a batch:

lua myfirstprogram.lua
5

15

3.1.2 Precompilation
An executable program is a file that stores machine code instructions. It is not com-
mon to write a program directly in machine code, so we use so-called compilers to
create executable programs. Here we will be talking about the luac program. It
should be remembered that with luac we do not create a standalone executable pro-
gram, as is the case with many other programming languages, but only precompiled
code that speed up the loading of code into memory.

luac myfirstprogram.lua

By looking in the directory (ls -l), we see that a new file has appeared:

-rw-rw-r-- 1 tom tom 219 aug 17 19:53 luac.out
-rw-rw-r-- 1 tom tom 24 aug 17 19:50 myfirstprogram.lua

The luac.out name is the default one and it is not obvious which one source
code it refers to. It is more useful to specify the name of the output file explicitly:

luac myfirstprogram.lua -o myfirstprogram.out

-rw-rw-r-- 1 tom tom 219 aug 17 19:53 luac.out
-rw-rw-r-- 1 tom tom 24 aug 17 19:50 myfirstprogram.lua
-rw-rw-r-- 1 tom tom 219 aug 17 19:54 myfirstprogram.out

For more information about luac, see eg. Lua.org (2020).

3.1.3 Online tools
In addition to the software installed on our own computer, we can use popular tools
available online. The use of them is quite intuitive, so here is just an overview of the
most well-known ones.

https://geekflare.com/online-compiler/lua
https://www.jdoodle.com/execute-lua-online/
https://onecompiler.com/lua/3y5j9aajb
https://replit.com/languages/lua
https://www.tutorialspoint.com/execute_lua_online.php
https://www.lua.org/demo.html

16

Figure 3.2 Replit: Online development environment

Figure 3.3 Development environment of Lua online

17

Questions

(1) What is a compiler?
(2) What is the difference between a compiler and interpret?
(3) Why is batch processing preferable to interactive work?

18

4 Elements of the programming language
Lua

Let’s first compare the languages that people speak. Each language has its own alpha-
bet. The alphabets of some languages are similar (compare English with Slovak), oth-
ers (e.g. Czech, Greek and Russian) are are different. The alphabet is made up of
symbols, which we call letters.

Programming languages – even though they are artificially created and designed
for machine processing – are in this respect living languages similar. Every program-
ming language has its own ‘alphabet’, which is called set of symbols. The ‘alphabet’
of some programming languages are similar, others are are very different from each
other.

The symbol set (alphabet) of the Lua programming language consists of consists
of letters, numbers, and special symbols.

4.1 Reserved words

The programming language Lua contains 22 reserved words, see the following
tables.

Table 4.1 Reserve words in Lua

and break do else
elseif end false for
function goto if in
local nil not or
repeat return then true
until while

Table 4.2 Reserve words in Lua divided into groups

constants false true nil
variables local
operators and not or
conditions if then else elseif end
loops for in repeat until while
 do end
functions function return
jumps break goto

19

4.2 Identifiers

The language symbols described so far are not enough to write a program. For one
thing, there are too few, andmost of them have their own special meaning. Therefore,
anyone who writes a program creates his own building blocks, his own elements to
which he gives an unambiguous name, or identifier. The identifiermustmeet certain
rules:

• consists of letters, numbers and underline but the numeral identifier must
not begin with;

• There is distinction between lower case and upper case (identifiers are case
sensitive); the

• identifier must not be identical to the expressed word;
• identifier must be unique within the program or its part, that is, the same
identifier cannot be used to refer to two or more simultaneous occurring sim-
ultaneously;

• the length of the sequence of characters of which the identifier consists, i.e.
identifier length is not limited in Lua.

Table 4.3 Examples of correctly formed identifiers

NUMBER _ A1a _a

Number a AVERAGE _ZS

number x SUM_OF_ELEMENTS A1_2

nUMBER z MATRIX TMP1

4.3 Numbers

We divide numbers into whole numbers and numbers with a decimal part. We can
use Lua to write integerintegerinteger decimal or hexadecimal notation, hexadecimal
notation begins with the prefix 0x.

Numbers with decimal part is written only in the decimal system, but we can
choose between decimal and semilogarithmic notation.

Decimal notation differs from the European continental convention in that after
decimal point instead of a comma. Semilogarithmic notation of mantisy and expo-
nentiation. Let’s recall with an example: the number 14.75 can bewritten as 1.475⋅101.
In the language Lua (as well as in other programming languages), the part ‘⋅10’ is
replaced by the letter E (or e). The number is then written as 1.475\,E\,1\,.

20

Table 4.4 Examples of incorrectly created identifiers

Identifier error description

1MATRIX digits at the beginning

Numeró, Číslo characters of the national alphabets are not among the letters

R>S special symbols cannot be used

A1–2 minus sign (dash) ‘–’ cannot be
used, it is a character other than ‘_’

Sum of elements separators (spaces) must not be part of the identifier

in identical to the reserved word

FAST! exclamation mark is not allowed

Before each number – the integer, with the decimal part, but also before the expo-
nent – can have a + or − sign.

Table 4.5 Examples of correctly written numbers

Decimal system Hexadecimal
system

Integers With decimal part Integers

−18 24. 1.97e3 $A1A1

−18 104.75 −24e−2 −000 −0xF321

+18 −0.88765 0.11245E−06 −0x321

−0 −0.00000 0.00e00 −0x0

Table 4.6 Examples of incorrectly written numbers

Number Error Description

23,98 decimal comma instead of a dot

123.456 e 7 number notation must not contain spaces

0x23.98 hexadecimal numbers must not have a decimal part

0x12W3 number notation contains an illegal character (W is not a digit)

2 ∗ 3 occurrence of the special symbol ∗

21

4.4 Strings

A string is a sequence of arbitrary characters. Any sequence of characters that is to
be understood as a string, is delimited from the surrounding text by an ’ (apostrophe),
eg. Hello!, or by " (quotations marks), eg. "Hello!".

The existence of two characters with which we can mark strings allows us to use
these characters also inside the string, which otherwise would not be so simple:

"Hello, Mr O'Brien!"
'The character " is the quotation mark.'

A string that contains no characters is called empty string:

\type{''} or \type{""}

4.5 Separators

Separators separate the symbols from each other. In language Lua, there are four
kinds of separators used: space, tab (a character with ordinal number 9, end of line,
and a comment. There can be an unlimited number of delimiters side by side, allow-
ing programs to be written neatly.

4.6 Comments

When writing a program, it is very useful to take notes on the program, that we
create. A well annotated program is easy to read even after a long time. We will use
them extensively in the examples given in this book notes. Notes are written in two
ways, as we distinguish between notes single-line and multi-line.

january = 31 -- January has 31 days

january = 31 -- [[January
has
31 days
--]]

22

Questions

(1) What do we call a symbol set?
(2) What are reserved words?
(3) What are identifiers used for?
(4) What rules are used to create identifiers?
(5) Decide which identifiers are written correctly and which are incorrect:

– First program
– ’Second program’
– ’−0.876 e6’
– "Great Britain"

– ’CALCULATION RESULT IS’
– ’CALCULATION_RESULT_IS’
– ’repetition
– "3 o’clock"

(6) What does the semilogarithmic notation of a number look like and what are its
parts called?

(7) What does $ mean in integer notation?
(8) Which character do we use in Lua to separate the integer and decimal parts of

a rational number?
(9) Decide which numbers are written correctly and which are incorrect:

– 123
– −256
– 8⋅102
– .333333333

– 1.999
– −876 e6
– C
– 1.8755e08

– −34C.17
– 0x12AB
– 0x12GA

23

5 Variables, data types, expressions

Each program (not only in programming language Lua) transforms input data into
output data using precisely described steps. As a rule, programmes are not written
for specific input data, but for input data that has certain specified properties.

5.1 Variables and Data Types

For example, let’s consider two programmes: one programme can add two arbit-
rary numbers that we specify, the other can add only two specific numbers, for
example 12 and 5. Such a program makes virtually no sense.

A program that has to add two numbers has to ‘memorize’ these numbers.
The part of operational memory where these numbers are stored is called

variable.
Each variable must have two properties specified:

• the set of allowed values and
• the internal representation in the computer (memory size, encoding of val-
ues)

• the set of operations allowed for the given type.

We denote the description of these three properties collectively by the term
data type.

In terms of the relationship between variable and data type, programming lan-
guages can be divided into two groups. In the first, ‘classical’, the data type is spe-
cified when the variable is declared, and thus it is given within the program that the
variable will always take values only of this data type and no other. The Lua pro-
gramming language belongs to the second group, where the data type is specified in
the moment where a value is assigned. We say that variables are typed dynamically,
i.e., when the program is running.

Therefore, there is no command to specify the data type in advance in Lua.

24

5.2 Brief overview of Data Types in Lua

There are eight basic types:

• nil – indicates an unassigned (non-existent) value
• boolean – data type of logical values true and false
• number – one common data type for integer as well as for floating point
number, typically double (eight bytes) according to IEEE 754

• string – sequence of characters
• function – own or existing subroutines
• table – for all structured data type, implemented as an associative array
• userdata and thread (data from the hosting program in C and for implement-
ation of coroutines, respectively (not discussed here)

Except the last two, all other data table will be explained in detail in the special
sections.

The Lua programming language provides also a multiple assignment. On the left
side, there is the list of variables, on the right side of the assignment the correspond-
ing number of values. In the following text, we will see that on the right-hand side of
the assignment can also used a function (see chapter 10) that creates the correspond-
ing number of values at runtime.

a, b, c = 0, 0, 0
price, name, available = 100, "nice new shirt", false

Multiple assignment is very useful when setting default values in subroutines
(called variable initialization) and is often used in iterative functions, which we will
use for example for traversing through structured variables, called tables.

To conclude the talk about assignment, the following case needs to be pointed out:

local a,b=1,a+1
print(a,b)

If you have tried this example, you can enjoy the error message containing a ref-
erence to a non-existent variable a But we do use with a here. In any assignment
– simple or multiple – all expressions on the right-hand side are evaluated first, fol-
lowed by the actual storage of the values. So at the time of evaluating the a+1 expres-
sion, the a variable is not really available yet.

25

5.3 Expressions

An expression is a prescription for getting a value. An expression consists of
operands, operators and parenthesis. These are properties we already know from
mathematics. But let’s look at the differences between a mathematical expression
and an expression in Lua.

The first difference is that we write expressions in Lua at one level (called linear-
ization of notation). We do not use fractions, exponents, or other special notations
(for example, √ for the square root).

The second difference is found in the use of parentheses. There are three kinds of
brackets used in mathematics – (), [] and {}. Expressions in programming languages
including Lua only suffice with just one kind – parentheses (round brackets). How-
ever, there is no limit to the number of pairs of parentheses, so they can be used to
express any complex expression.

The third difference lies in the type of value after evaluating the expression. In
mathematics, the the value obtained is usually numerical. In a programming lan-
guage, after evaluating the the value of not just a numeric value, but an arbitrary, not
just a simple data type.

Operands can be expressed by variables, function calls (see chapter 10) or expres-
sions.

Let’s show a few expressions without further explanation:

1 true "hello"

a>=b math.abs(x)>math.sqrt(y) a+b

a a*b+c (a+c)*b

(math.abs(x)+math.sqrt(z)>math.sqrt(y)-c)=

(-math.abs(x)+math.sqrt(x)<>y*y+s)

The expressions, as we can see, are of varying complexity. The rules that allow
expressions to write must cover all possibilities.

5.4 Operations and operators

In the previous text we noticed that the individual parts of the expressions are
connected by special symbols, which here represent operators. The meaning of the
term operator in programming languages corresponds to the common understanding
of operators in mathematics.

26

Operators have two important properties:

• operator arity – expresses the number of operands that must be given to
the corresponding operator. Typical operators are unary, which require one
operand, and binary operators requiring two operands. For example, the
operator / (division) requires a nominator and a denominator. The not oper-
ator requires only one operand, whose value it negates.

• precedence – expresses the order of expression evaluation. The priority of
the operators is given in the Table 5.8.

5.4.1 Operation with logical values
The logical data type works with two logical values: true and false. The data type
for these two values is called boolean.

There are four operations available for a logical data type, as listed Table 5.1.
Table 5.2 shows what results we get for different values of 𝑝 and 𝑞.

Table 5.1 Operation with logical data type

Operation name Operator Number of values
required to calculate

logical negation not 1

logical product and 2

logical sum or 2

logical exclusive sum (nonequivalence) ~= 2

Table 5.2 Evaluation of logical operations

Operands Operations results

𝑝 𝑞 𝑝 and 𝑞 𝑝 or 𝑞 𝑝 ^𝑞 not 𝑝

false false false false false true

false true false true true

true false false true true false

true true true true false

27

5.4.2 Relational operations
Associated with a logical data type are the relational operations that that express
a relationship between two values. Relational operations are binary (they have two
operands), the symbols expressing the type of relationship are called relational oper-
atorsrelational operator. An overview of relational operations is shown in Table 5.3,
the individual operations correspond to the same operations as in mathematics.

Table 5.3 Relational operations and relational operators

Relation Mathematical Notation Symbol in Lua

less than < <

less than or equal to ≤ <=

equal = ==

not equal ≠ ~=

greater than or equal to ≥ >=

greater than > >

Suppose there are two numbers, 𝑎 and 𝑏. The statement 𝑎 > 𝑏 is either true or false.
Expressed in the language Lua, the expression 𝑎 > 𝑏 either takes the value true or
false.

Thus, the result of any relational operation is a value of the data type boolean.
In the previous paragraph we used the numbers 𝑎 and 𝑏 as an example. However,
relational operations can be performed with other data types, eg with data types
boolean or string.

5.4.3 Operations with numeric data type
Basic arithmetic operations are given by Table 5.4. The operations with numbers
correspond to the usual conventions. The - character is used in two senses – as a
unary minus to represent negative values (e.g., -5), and as a subtraction operator
(e.g., 5-3).

It is also worth remembering that we distinguish between ordinary and integer
division, and that the remainder operation after division can be applied to numbers
with a decimal part.

We use the abs function from the math library to determine the absolute value.
The concepts of function and library will be explained later, for now it is sufficient to
know that the library name and the function name are joined together by a full stop.

28

Table 5.4 Operations with numeric data types

Operation Identificator or Symbol Number of operands

(unary) minus type- 1

addition + 2

subtraction - 2

multiplication * 2

exponentiation ^ 2

float division / 2

integer division // 2

remainder after division % 2

absolute value math.abs 1 parameter

Table 5.5 Comparison of math and Lua expressions

Math expression Expression in Lua
𝑎+𝑏
𝑎.𝑏

(a+b)/(a*b)

sin 𝛾 math.sin(gamma)

𝐼 < 𝐽 < 𝐾 (I<J) and (J<K)

𝑚 ∈ (33,5; 100⟩ (m>33.5) and (m<=100)

𝑥 mod 𝑦 x % y

𝑥2 x^2

𝑥 𝑖+2 x^(i+2)

5.4.4 Rounding functions
The programming language Lua provides two basic functions for rounding. They are
called math.floor and math.ceil and result in rounding down or up, respectively.

print(math.floor(5.5), math.floor(-5.5))
print(math.ceil(5.5), math.ceil(-5.5))

If we want to round to decimal places, we have to use this way:

29

print(math.floor(5.55*10)/10, math.floor(-5.55*10)/10)
print(math.ceil(5.55*100)/100, math.ceil(-5.55*100)/100)

5.4.5 Bitwise operations with integer numbers
Bitwise operations belong to lower-level operations, because they manipulate the
individual bits of the operands directly. To understand these operations, we need to
imagine the internal representation of integers in computer memory. The number
is converted into a binary system (either a positive number into a direct code, or a
negative number using an additional code) and this sequence (vector) of bits is the
operand for bitwise operations.

The operations we present here are performed for each pair of corresponding bits
separately, and their results correspond to the results of logical operations.

As an example, we will show the operation of the bit product of the values 25 and
7. First, we will convert the numbers into the binary system:

25 = 16 + 8 + 0 + 0 + 1 => 11001
15 = 0 + 8 + 4 + 2 + 1 => 01011

We will now evaluate a pair of bits using logical operations. We assume that
1=true and 0=false:

11001
01011

01001

In the first and fourth positions from the right we got ones, because both operands
of the given position also have a one. In the other three cases, the logical sum acquires
the value false, we wrote it as zero. The following is the conversion of the result back
to the decimal system:

01001 => 0 + 8 + 0 + 0 + 1 = 9

Further bitwise operations are given with a short explanation in table 5.6. The
bitwise operations shift right and shift left shift a sequence of bits by the specified
number of positions, padding the missing positions with zeros:

25 (00011001) >> 2 => 6 (00000110)
15 (00001011) << 4 => 240 (10110000)

30

Table 5.6 Bitwise operations and operators

operation operation number of operands

bitwise NOT (negation) ~ 1 bit inversion

bitwise AND () & 2 both must be 1

bitwise OR () \eTD \bTD 2 at least one must be 1

bitwise exclusive OR () ~ 2 just one must be 1

shift right >>

shift left <<

5.4.6 Operation with string data type
By the term string, we imagine a sequence of characters that together form a certain
meaningful unit (e.g. word, sentence). By character we mean any eight-bit value
according to the character table, regardless of encoding. Encoding can also be multi-
byte (e.g. UTF-8), a multibyte character is stored onmultiple bytes. Control character
(characters with ordinal value between 0 and 31, eg.\0, \1, …) are also permitted.

The basic two operations with the string data type are length determination and
string concatenation (see table 5.7.

Table 5.7 String operations

symbol operation number of operands

string length determination in bytes 1

.. concatenation of strings 2

Strings in the Lua programming language are understood as immutable, which
means that we cannot intervene in them (change characters, remove characters, etc.)
The string library is intended for these operations, see Chapter 8.

r = "Hello"
print(r,#r)
r = r .. " world!"
print(r,#r)

5.4.7 Detection of data type
There is the predefined function typewhich returns a string containing the name of
a data type of the parameter:

31

print(type(123))
print(type(123.456))
print(type(0x1234))
print(type("Hello!")
print(type(true))
print(type(nil))
print(type(math.abs))

5.4.8 Conversion between number and string
To change the data type from number to string and back, the Lua programming lan-
guage offers two functions – tostring and tonumber:

a = 5
print(a,type(a))
b = tostring(a))
print(b,type(b))
c = b.."7"
print(c,type(c))
d = tonumber(c))
print(d,type(d))

Non-number strings cannot be converted to a number:

p = "Hello!"
q = tonumber(p)
print(q) -- nil

32

5.5 Expression evaluation and precendence of operators

As in mathematics, an expression that is in parentheses, has an even higher prior-
ity, which means we evaluate it first. The evaluation of standard functions also has
a higher priority. About some standard functions we have already mentioned in the
data types. An overview of selected Lua math functions is given elsewhere.

5.5.1 Expression evaluation a precedence of operators
If all operators have the same priority, they are evaluated from left to right, as they
were used in the just processed expression.

See the Table 5.5 for some examples of mathematical expression notation in Lua.

Table 5.8 Precendence of operators

operators/operations symbols

exponentiation ^

unary operators not # -

multiplicative operators * / // %

additive operators + -

string concatenation ..

bitwise shifts << >>

bitwise and &

bitwise not ~

bitwise or |

relational operators < > <= >= = ==

logical product and

logical sum or

Note: Operators are ordered by its priority in descending order.

33

Questions

(1) Explain the three main differences between the mathematical notation of the
expressions written in the language Lua.

(2) Explain the terms arity and operator precedence.

Exercises

(3) Write the following expressions in Lua:

– 5
7

– 0,25 ⋅ 𝑦
– 1

3𝑎 +
1
9𝑎

2

– √2(𝑎 − 𝑏)2

– sin 𝑥2 + sin2 𝑥
– 𝑥2 < 𝑦2 < 𝑧2
– [(𝑑 − 𝑒)3 + 𝑓] ⋅ (𝑎 − 2)
– 𝑎 <> 𝑏 <> 𝑐

(4) Evaluate the following expressions:
– 20 // 7
– 20 / 7
– 20 % 7
– math.floor(5.5)
– math.floor(−5.5)
– math.ceil(5.5)
– math.ceil(−5.5)
For the following expressions, decide whether they are written correctly or

not.
– b∗math.sin(a)<a∗sin(b)
– 2
– a≠ b−1
– (a<b)+1=0
– (a<b)=(c>0)
– sqrt(r−1)/100

(5) For the following pairs of values, determine the result of the expression. Write
the results with a pencil and then correct them according to the computer.

34

boolean boolean false and false

false and true

true and true

false or false

false or true

true or true

boolean nil false and nil

true and nil

false or nil

true or nil

nil boolean nil and false

nil and true

nil or false

nil or true

nil number nil and 11

nil and 0

nil or 11

nil or 0

number number 4 and 2

4 or 2

x and 4

x or 4

string number "aaa" and 2

"aaa" or 2

string nil "aaa" and nil

"aaa" or nil

nil and "aaa"

nil or "aaa"

35

6 Procedures for data input and output

In the previous text, we used procedures io.read and printwith no detail explana-
tion. In addition, there is also a procedure io.write for the same purpose as print.
Procedures io.read and io.write deserve much more attention, as they can be
used to communicate between the user and the program. As a rule, every program
handles some input data into output. The input data must be entered, the output of
the program is needed to be displayed.

Input and output data are usually stored in in files. A file is a data type that will
be described in detail in chapter .

However, here wewill mention only two special files, which are the standard input
file and the standard output file. Both files are text files, which means that there is a
pair of characters between the lines with the coordinate values 13 and 102.

In programming language Lua, these two files are accessed automatically.
So using the io.read and io.write procedures is actually using the standard

input and output files. The following section will discuss the behavior of these two
functions. How do they behave with other kinds of files will be described along with
the file data type.

Table 6.1 lists the data types of the programming language Lua that can can be
handled by io.read and io.write.

2 This pair of characters occurs only on personal computers running DOS, Windows, etc. In operating
Unix-like systems, the end of the line is marked only by the character 10.

36

Table 6.1 Overview of read and write options of
data types by the io.read and io.write procedures

data type io.read io.write/print

Simple data types

number yes yes

char yes yes

boolean no yes

Structured data types

string yes yes

table NO NO

6.1 Read procedure io.read

Reading into an arbitrary numeric variable – From the input file, characters cor-
responding to the lexical definition of a number, i.e. sign, digit, for floating point
numbers, then a decimal point, possibly a letter e for exponent are read.

The reading of a numbermay be preceded by an arbitrarily long sequence of delim-
iters (spaces, line breaks, tabs), which the procedure will ignore.

x = io.read() -- Enter a number
print(x, type(x))
print(x*2) -- Not possible

x = tonumber(io.read()) -- Enter a number
print(x, type(x), x*2) -- OK

Reading into a variable of type string – the string is read from the input file a
whole line and it is assigned to a variable as a whole.

x = io.read() -- Enter a string
print(x, type(x))

37

Reading into a variable of type string with defined amount of characters –
one is read from the input file character is read from the input file and assigned to
a variable.

x = io.read(4) -- Enter the string "Hello!"
print(x, type(x))

Note: If we reach the end of a line and read the input by characters, Linux users
will have to read the end-of-line character to get the beginning of the ne line. Win-
dows users will have to read both (13+10) characters.

6.2 Procedure io.write

Displaying the value of the data type string – in the output file the string will
appear as it is stored in memory.

Displaying value of data type boolean – the output the strings false or true
will appear on the output depending on the value of the expression.

Displaying numbers is identical to the usual notation. Floating point numbers will
be printed out in decimal form. For too big numbers, the exponential form, i.e.,
mantissa, the e sign, and the exponent, will be used automatically.

6.3 The differnce between io.write and print

Let’s start with an example:

a = "Hello" b = "world" c = "!"
print(a,b,c)
io.write(a,b,c)
print(a)
print(b)
print(c)
io.write(a)
io.write(b)
io.write(c)
io.write(a.." "..b..c)

So we see that the difference is the addition of the end-of-line character.

38

6.4 Output Information Formatting

For printing formatted strings, we can use the function
string.format. It interprets the string literals in the provided string and replaces
them with the appropriate value which is defined by the first parameter. The first
example will arrange name, surname, city and favourite colour:

n = "John" s = "Smith" c = "Dallas" fc = "blue"
print(string.format("Mr %s %s from %s prefers %s colour.",n,s,c,fc))
print(string.format("%s, %s (%s): %s",s,n,c,fc))
print(string.format("%s' citizens (eg. %s %s) prefer %s.",c,n,s,fc))

There are variables for day, month and year. Print them in Czech, US, British,
French, and international numeric formats.3

d = 30 m = 5 y = 2003
date = string.format("%02d.%02d.%04d",d,m,y) -- GB
print(date)
date = string.format("%02d/%02d/%04d",m,d,y) -- US
print(date)
date = string.format("%02d. %02d. %04d",d,m,y) -- CZ
print(date)
date = string.format("%2d/%2d/%04d",d,m,y) -- FR
print(date)
date = string.format("%02d-%02d-%04d",y,m,d) -- ISO
print(date)

Table 6.2 Overview of output formats

symbol for which output format short example output

d decimal number "%02d",44 44

x hexadecimal "%02x",44 2c

o octal "%02x",44 54

f floating point number "%5.2f",8.2 5.20

s strings "%s","Lua" Lua

q adding quotations marks "%q","Lua" "Lua"

% percent sign "3d%%",100 100%

3 There are more ways how to write date in UK, US, or France; this is only one possible way.

39

For more complex cases, we can use a clearer way with the extra string variables
which contains the output format specification:

d = 5; m = 11; y = 2021
dateformat = "%02d/%02d/%04d"
date = string.format(dateformat,d,m,y)
print(date)

Assume variables cr and ci with real and imaginary part of a complex number.
Print them in typical way in math:

cr = 5.111 ci = 2.555
formatcomplex = " %010.5f + %010.5fi "
print (string.format(formatcomplex, cr, ci)) -- not very fine
formatcomplex = " %10.5f + %10.5fi "
print (string.format(formatcomplex, cr, ci)) -- better
formatcomplex = " %.5f + %.5fi "
print (string.format(formatcomplex, cr, ci)) -- the best

The following example shows the use of q:

string.format('%q', 'This string contains "quotes" and \n new line')

will produce the following strings:

"This string contains \"quotes\" and \
new line"

40

Questions

(1) Which data types cannot be processed by the io.read procedure?
(2) Which data types cannot be processed by the io.write procedure?
(3) What is called formatting of output information?
(4) What methods do we use to modify output information?

Exercises

(5) Which date format do you use in your country? Prepare the formatting string.
(6) Assume there values, numerator, denominator, and their quotient. Prepare the

formatting string which will give you this output:

If we divide 3 by 7 (3/7), we will get 0.428571, ie. 42.86%.

41

7 Control structures of Lua

7.1 Conditional command

7.1.1 Conditions and command if
The if command is used to branch the program into two branches (called binary
branching), whereby the program uses only one of the branches and skips the other.

if condition
 then commands
end

if condition
 then commands1
 else commands2
end

The symbol ‘condition’ will be used here and in other syntactic graphs as an expres-
sion whose evaluation yields a value belonging to the data type boolean, i.e. either
a value true or false.

The second example contains the ‘else’ part, which is optional. This means that
the if statement can occur in two forms. The first of these is called incomplete
command if, the second one complete command if.

How is the if command executed?

(1) The program first evaluates the boolean expression.
(2) If the resulting value is true, then the statement or statements following the

reserved word then.
(3) If the value false is obtained, the part after the word then is is skipped and

the commands following the reservedword are executed else, of course only
if we have ‘else’ have been used.

if shape=="rectangle" then read(CisloA, CisloB) else read(Cislo) end
if Cislo%2==0 then print('This number is odd.') end
if Cislo<10 then Soucet = Soucet+CisloA end
if Mesic==1 then Days = 31 else
 if Mesic==2 then Days = 28 else
 if Mesic==3 then Days = 31
end end end

42

We will demonstrate the use of if in a program that calculates the functional

value of a function 𝑦 = √𝑥+3
𝑥2−1 for the number 𝑥 that is in the input file. If the function

value is not in the real number domain, the output will be message ‘Undefined’.
Analysis: The function does not have a solution in the real number domain for all

𝑥 < 0 because 𝑥 is subtracted. At the same time, 𝑥2 − 1 must be different from zero,
otherwise it cannot be divided.

io.read(x)
if x>=0 and x~=1
 then print((math.sqrt(x)+3)/(x*x)-1)
 else print('Undefined.')
end

As another example let’s create a program that calculates the roots of a general
quadratic equation in normalized form. The coefficients of each term are on the
standard input.
The input is three numbers. The output is one or two numbers – the roots of the
quadratic equation. Algorithm:

𝑥1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

a, b, c = io.read("*n", "*n", "*n")
discriminant = (b*b)-4*a*c --[[Calculating the discriminant with
 must be performed before using it under the square root--]]
if discriminant>=0 -- Calculate the real roots
 then sqrtd = math.sqrt(discriminant)
 root1 = (-b + sqrtd) / (2*a)
 root2 = (-B - sqrtd) / (2*a)
 print('Real roots: ',root1)
 print(' ',root2)
 else -- Computing complex roots
 root1 = -b / (2*a)
 root2 = math.sqrt(-discriminant) / (2*a)
 print ('Complex roots: ', root1,'+',root2,'i ')
 print(root1,'-',root2,'i ')
 end

Another example is a program that reads three numbers and prints them sorted
by size.

43

 local a,b,c = io.read("*n", "*n", "*n")
 if a>b
 then if b>c then print(a,b,c)
 else if a>c then print(a,c,b)
 else print(c,a,b)
 end
 end
 else if a>c then print(b,a,c)
 else if b>c then print(b,c,a)
 else print(c,b,a)
 end
 end
end

7.1.2 Command if+elseif
The if command can also be used to branch a program into multiple branches.

if condition then commands1
 elseif condition2 then commands2
 elseif condition3 then commands3
 elseif condition4 then commands4
 ...
 else commandsx
end

The branches are labeled with conditions that are evaluated sequentially as it’s
their turn. If any of the conditions takes the value true, the conditions of the other
branches are no longer evaluated and the branches are skipped.

Again, we can write an optional branch starting with a reserved word else. The
command given in this branch is executed just then, if none of the conditions for the
individual branches have been met.

Another example with multiple branching advises the entrepreneur how to pro-
ceed in his warehouse management. Assume that the variable how many represents
the current quantity of the goods in stock:

if how many < 10 then print('Quickly restock and use express shipping!')
 elseif how many < 33 then print('Restock!')
 elseif how many <= 299 then print('Do nothing.')
 else print('Discount and get rid of stock.')
end

Let’s think about what happens if multiple branches are described by the same
constant. The branch that is listed first is executed, and skip the other branches. In
the above example this would occur, for example, if we changed the order of the
conditions:

44

if how many < 10 then print('Restock quickly and use express shipping!')
 elseif how many <= 299 then print('Do nothing')
 elseif how many < 33 then print('Restock!')
 else print('Discount and get rid of stock')
end

Now the entrepreneur gets the advice to do nothing, for any quantity of interval
11 to 299, and the program never gets to the third condition.

Exercises

(1) Create a program in Lua language to find out if the given number is even or
not.

(2) Create a program in Lua to determine whether a given number is positive, neg-
ative or zero.

(3) Create a program in Lua to calculate the perimeter of a triangle given by the
lengths of its three sides.

(4) Create a program in Lua to calculate the area of a right triangle given by the
lengths of its sides.

(5) Create a program in Lua to calculate the perimeter of a right triangle given the
lengths of its branches.

(6) Create a program in Lua to determine whether a triangle given by its side
lengths is equilateral, isosceles, or right-angled.

7.2 Loops

Loop commands allow you to ordermultiple repetitions of a command or a sequence
of commands. The part to be repeated is called the loop body. Furthermore, each loop
statement must contain a specification of the number of repetitions, either explicitly,
i.e., by specifying specific numbers, or by a condition (implicitly), i.e. by specifying
the condition at which the loop is to terminate.

• command while – the number of repetitions is specified by a condition eval-
uated before the part of the program to be repeated,

• repeat – the number of repetitions is determined by the condition evaluated
by the after part of the program to be repeated,

for – the number of repetitions is determined explicitly and is determined
by the number of values.

• for...in – the number of repetitions is specified explicitly and is determ-
ined by the number of values.

45

The way the number of repetitions is specified has a great influence on the choice
of the appropriate loop statement in different situations. When deciding which loop
to use, we must first be clear whether we are able to specify the number of repetitions
in advance, or whether the loop will be controlled by reaching a certain state.

For comparison the loops, see the following code:

while condition do
 commands
end

repeat
 commands
until condition

for variable=start,end do
 commands
end

for variable=start,end,step do
 commands
end

for key,value in list do
 commands
end

7.2.1 Loop while
The procedure for processing the while loop:

(1) Evaluates a boolean expression.
(2) If the resulting value is true, the following commands are executed after the

reserved word do until the reserved word is encountered end.
(3) Then the boolean expression is evaluated again (go to step 1).

This loop continues until a situation occurs in which the resulting Boolean expres-
sion is false. The statement after the reserved word do is then no longer executed,
and continues with the command following the loop while, i.e. after the word end.

The while loop has a boolean expression at the beginning, i.e. before the first the
first iteration of the loop. If the expression is false on the first evaluation, then the
loop body is not executed at all. It follows that the number of repetitions of this of
the loop is from the interval ⟨0;∞⟩.

We will demonstrate the use of while on two programs. First, calculate and print
of the square and third powers and of the powers:

46

x=0
while x<100 do
 x=x+1
 x2=x*x
 print (x, x2, x2*x, math.sqrt(x), x^(1/3))
end

The variable x is of great importance here, since its valuewill ensure that in certain
point in time. Therefore, its value is 0 at the beginning and inside the loop its value
is always incremented by 1.

Here we can also notice two other algorithmic constructions – the calculation of
the third power and the third root. Since the third power is computed as the product
of the square root (which anyway we need) and the next 𝑥, it pays to calculate the
square root in advance and then use it twice. For the third power, the situation is
more interesting – for this calculation we do not have a predefined function for this
calculation. That iss why we used other way – a mathematical expression. Similarly,
we could do the same for the second power (x^(1/2) or x^0.5), but if we can, we
prefer existing subroutines.

The second program calculates the greatest common divisor by successive subtrac-
tion:

i,j = io.read("*n", "*n")
while i<>j do
 if i>j then i=i-j else j=j-i end
 print(i)
end

Here the loop is terminated if i and j are equal.

7.2.2 Loop repeat/until
The procedure for processing the repeat loop:

(1) Executes a statement or sequence of statements between reserved words
repeat and until.

(2) A boolean expression is evaluated.
(3) If the resulting value is false, the execution is repeated. the statement(s) in

the loop (go to step 1).

The loop proceeds in this manner until a situation occurs in which the resulting
value of the boolean expression is true.

The repeat loop has the boolean expression at the end, i.e. after the body of the

47

loop. This means that the possible number of repetitions of this of the loop is from
the interval ⟨1;∞⟩ (compare with the while loop).

We will show the use of this statement again with three examples, first we will
calculate the product of two natural numbers by successive addition.

if i~=j then tmp=j j=i i=tmp end
 -- Now the value of variable i is a smaller value of variable j
product=0
tmp=i
repeat
 product:=product+j
 tmp=tmp-1
until tmp==0
print (i," * ", j, " = ", product)

The second example shows a program that calculates a factorial by successive
multiplication.

factorial=1
factorial=0
end=10e10
repeat
 digit=digit+1
 factorial=factorial*cislo
 print(number, factorial)
 --[[This print command
 is used only to illustrate the operation of the program.
 --]]
until factorial>end
print(number, "! = ", factorial)

And the last one computes the numeric sum of the given number.

x = io.read()
x = math.abs(x)
local nsum = 0
repeat
 local nx = x//10 -- math.floor(x/10)
 nsum = nsum + (x-nx*10)
 x = nx
until x==0

For integer division we have an alternative method of calculation in the note. This
was necessary in older versions of Lua. From version 5.3 onwards we will use the
integer division operator in preference.

48

7.2.3 Loop for – numeric
The for command is used in cases where the number of of loop repetitions. We
always specify the starting (S) and ending (E) value of the loop variable. Number of
repetitions is given by 𝑁 = |𝐸 − 𝑆| + 1. The following value is incremented by 1 from
the previous value.

In the Lua programming language, we can also specify a pair of values, where the
initial value is less than the final value (𝑆 < 𝐸). For the loop to run, we must then add
negative step information between two consecutive values.

We can use this extended notation for any other step.
Let’s demonstrate the for loop statement on a program that has to add 10 numbers

of the input series. Thus, the number of repetitions of the loop is known.

sum=0
for count=1,10 to
 number = io.read("*n")
 sum = sum + number
end
print(sum)

The variable that controls the loop’s operation is extinguished after the for loop
ends. It is therefore a so-called local variable.

for i=1,10 do print(i) end
print(i)

The value nil, provided by the last print statement, is the proof, that the variable
no longer exists and therefore can have no value.

7.2.4 Loop for – generic
See the chapter on tables for more examples of using the for loop, where it will serve
as a basic tool for traversing an indexed array (table). There you will also see its other
variant for...in, which traverses associative array, i.e. a table whose values are not
indexed.

49

7.3 Examples to practice loops

Let’s have an input file with the following data: first, an integer N that gives the
number of employees, followed by N numbers representing the amounts to be to be
paid to each employee. We have banknotes with a value of CZK 2,000, CZK 200 and
CZK 100. Find out how many of each type the cashier needs to pay all the employees.

-- The counters must be reset before use.
TotalB2000, TotalB200, TotalB100 = 0, 0, 0
io.read(number of employees)
for i=1,number of employees to
 io.read(salary)
 B2000, zust = salary//2000,salary%2000 -- Number of banknotes with a value of 2 000 CZK
 B200 = zust//200
 B100 = (zust-B200)//100
 totalB2000 = totalB2000+B2000
 totalB200 = totalB200+B200
 totalB100 = totalB100+1
end
 print(totalB2000, totalB200, totalB100)

A teacher has decided to award a grade in a certain subject according to the num-
ber of points on the midterm tests.

Point range Grade

from to

100 80 1

79 65 2

64 50 3

49 30 4

29 0 5

The input is a series of integers representing the points scored. The series is ter-
minated by by −1. Find the average grade corresponding to the given score values.

50

sum = 0
count = 0
io.read(points)
while points<>-1 do
 if points>=80 then grade = 1
 elseif points>=65 then grade = 2
 elseif points>=50 then grade = 3
 elseif points>=30 then grade = 4
 else grade = 5
 end
 count = count + 1
 count = count + grade
 io.read(points)
end
print(sum/number)

7.3.1 Reading from a text file
We know that repeat and while are used when we don’t know in advance the
number of repetitions. In the least common divisor example, the loop until i and j
were equal. Reading the input data in this problem was to read two numbers from
the input file. The reading was done with the procedure read with two parameters.
So we knew in advance the number of values we needed to read.

However, there are a number of tasks (and perhaps most of them), where we don’t
know in advance the number of numbers we’re going to read. These cases are dealt
with in the next two sections.

7.3.2 Reading the input series to a stop value
Let’s have an input series of numbers in the input file. Their number is not prede-
termined, so we can’t tell which is the last number. To make it clear when to stop
reading, a number of algorithms use a so-called stop value, which is the number
listed next after the number series. Its value is known in advance and this value does
not appear anywhere in the in the whole number series. This value is usually very
different from other values.

Let us give an example: In the input file, there is a series of numbers that represent
the number of students in a class. Find the total number of students in the whole
school (in all classes).

The input series looks like this:

24 21 17 33 32 25 17 12 9999

51

To find out when to stop reading, we give the last value 9999, which obviously
does not represent the number of students. This number is a stop and we will check
to see if it has already been read.

school = 0 -- Each counter must be reset.
io.read(class) -- Read the number of pupils in the class
while class<>9999 to -- If there is no stop value...
 school = school + class -- Add class to school.
 io.read(class) -- Read the next class.
end
print(school) -- Display the result.

7.3.3 Read input data to the end of the input file
Let’s have in the input file an input series consisting of numbers, the number of which
again we don’t know. There is not even a stop to indicate the end of the input data.
We will showwhat facilities the Lua language provides for dealing with this situation
in the following example.

Build a program that calculates the average of all the numbers in the input file.
For example, we can imagine that these are the weights of some products, expressed
in kg, possibly including the decimal part.

First, let’s build a verbal algorithm:

• Prepare a variable to which we will add the continuously read and a variable
in which we will keep the number of read values.

• As long as there is a number in the input file, read the number, add it and
increment the read counter by one.

• When all the numbers have been read, calculate the average as the ratio of
the sum and the number.

Now we build the program, except for what is written with cursive, i.e. at least the
part that we can write with familiar commands:

count = 0
while \emph{\uv{is some number in the input file}} do
 io.read(number)
 count = count + 1
 count = count + number
end
print(sum, count)

The Lua language does not have any special function that can detect this. There-
fore, different solutions are used. The first is to read the first value already before the
loop starts.

52

count = 0
number = io.read("*n")
while number do
 count = count + 1
 count = count + number
 number = io.read("*n")
end
print(sum, count)

count = 0
count = 0
number = io.read("*n")
repeat
 count = count + 1
 count = count + number
 number = io.read("*n")
until not number
print(sum, count)

Conditions expressed by the identifier of a numeric variable (see while cislo
do) has an unusual behavior for us: the program does not evaluate the value of the
number, but whether there is any number in the variable cislo (here numeric) value,
or whether the variable contains the value nil, which indicates the absence of a
(numeric) value. Thus, if the input was a number, we get here the value true (some
number is present) and this allows the loop to be entered.

After processing the number, we read the next value from the input at the end of
the loop and everything repeats.

With this solution, some programmers consider the necessity of two read state-
ments, one before the loop and one at the end of the loop body. Therefore, there is
another method that transfers the decision to continue in the middle of the loop body.
This saves one read statement, but it with more complex constructs, it may not be
obvious at first glance where the loop actually ends. On the other hand, this solution
is used quite often in practice.

count = 0
set = 0
while true do
 number = io.read("*n")
 if not number then break end
 count = count + 1
 count = count + number
end
print(sum, count)

53

If we had characters (not numbers) as input, we could afford to one more trick:

while io.read(0) do
 character = io.read(1)
 print(character)
end
print("---")

What’s going on here? The io.read function with a numeric parameter supplies
from input stream a string of length corresponding to the specified number of charac-
ters. With zero, the function returns an empty string if there is still some data in the
input are present, allowing us to read the next character. Otherwise, the function will
return the value nil as expected, which in condition on the while loop, it evaluates
to false, and this causes terminate the loop.

54

Questions

(7) List and briefly describe the structured commands in Lua.
(8) What is the else part of branching commands used for?
(9) Which loop always runs at least once? Why?

(10) What is a control variable?
(11) Why can’t we use the for loop to process a series of numbers with a stop

Exercises

(12) Rewrite the for a = 10,2,$-$1 do ... with the repeat.
(13) Create a program in Lua to calculate the factorial of a given natural number.
(14) Create a Lua program to calculate the maximum of a series of numbers ending

in zero.
(15) Create a Lua program to list the number of numbers smaller than the first num-

ber in the series. The series is terminated by a value equal to the first number.
(16) Create a program in Lua to list the first n Fibonacci numbers.
(17) Create a program in Lua to calculate the value of a combinational number (n k)

for the given values of n, k.

(18) Create a program that reads a number from an input file and determine whether

it is in the interval ⟨−3
2𝜋; 0⟩ or (

𝜋
2 ; 𝜋⟩.

(19) Create a program that reads the coordinates of a point and finds out, whether
that point lies on the line 𝑦 = 5𝑥 − 3.

The numbers ..., ... and ... satisfy the given inequality. (or:)
The numbers ..., ... and ... do not satisfy the given inequality.

(20) The input is a number N followed by N numbers. Create a program, to find out
how many numbers lie in the interval ⟨−0.1; 5).

(21) Construct programs to calculate a number series with precision 𝜖=0.001:

– 1
2 +

1
4 +

1
8 +

1
16…

– 1
2 +

1
4 −

1
8 +

1
16 −

1
32…

(22) Create a table of function values (function table) for the values with step 0.1 in
the interval ⟨−5; +5⟩ for functions:

55

– 𝑦 = sin √𝑥+3
𝑥2−1 .

– 𝑦 = 𝑥2 + 3𝑥 − 1
– 𝑦 = 6𝑧2 + 3

𝑧 −
1
8

Note that for some numbers the function value may not be defined.
(23) Rewrite the example with the number of students in the school using the repeat

loop. Decide which of the two loops is more appropriate in this case.
(24) Complete the calculation of the average number of points for the problem ‘Notes’

and the average grade.
(25) The input file contains a series of numbers ending with −5,000. Find out how

many numbers belong to the interval ⟨1; 100⟩, ⟨101; 200⟩, ⟨201; 300⟩, ⟨301; 400⟩
and ⟨401; 500⟩. Find out how many numbers did not belong to any in any of
these intervals, too.

(26) In the input sequence, there are triples of numbers that represent the lengths of
of the sides of the triangle. The sequence of triples is terminated by the triple
0 0 0. Find out how many triangles are right-angled, how many are equilateral
and how many isosceles.

(27) The input is decimal numbers representing the exchange rate of the US dollar
to the Czech crown. Find the subtraction between the best and worst exchange
rate.

(28) The input is a pair of numbers representing the performance of the competitors
in the two rounds of the slalom. The numbers are expressed in seconds or with
decimal fractions. The number zero instead of time represents a disqualification
of a competitor. Find out how many competitors were disqualified in the first
round, how many in the second round (those disqualified in the first round do
not enter the second round) and also has a zero). Next, find out the fastest
competitor in each round and the competitor who was fastest overall in both
rounds. The sequence of pairs of numbers is terminated by the pair −1 −1.

56

8 Strings and string library

We have already familiarized ourselves with the first two subroutines for working
with strings, determining the length and concatenating strings. These two activities
are implemented directly in the Lua programming language. Here we will look at the
string library, which contains other useful functions.

As you can see from the following example, you can divide functions for working
with strings into four thematic categories.

-- CHARACTER MANIPULATION
string.byte (s [, i [, j]])
string.char (···)

-- STRING MANIPULATION
string.lower (s)
string.upper (s)
string.reverse (s)
string.rep (s, n [, sep])

-- SEARCH & REPLACE
string.find (s, pattern [, init [, plain]])
string.gmatch (s, pattern)
string.gsub (s, pattern, repl [, n])
string.match (s, pattern [, init])
string.sub (s, i [, j])

-- OTHER FUNCTIONS
string.len (s)
string.format (formatstring, ···)

8.1 Conversion between characters and ordinal values

In each character set, the individual characters are arranged into the given order
and the positions in the character set are called ordinal values. The functions string.byte
and string.char are used to determine the ordinal value of the given character(s)
and to determine which character corresponds to the specified ordinal value, respect-
ively.

s = "@ABCDEF"
print (string.byte(s)) -- 64 (ord. value of @ is 64)
print (string.byte(s,4)) -- 67 (ord. value of C is 67)
print (string.byte(s,4,4)) -- 67 (the same)
print (string.byte(s,4,6)) -- 67 68 69 (values of three characters)

57

By default, the ordinal value of the first character will be returned. We can specify
another character using its position in a string. For multicharacter process, the third
parameter determines the ending position in a string.

8.2 String manipulation

8.2.1 Upper and lower case letters
The first snippet does not need any explanation:

s = "Programming language Lua"
print(string.upper(s))
s = "HELLO!"
print(string.lower(s))

Unfortunately, this work only for English alphabet, national characters will not
be changed:

s = "CS:čšřďť FR:àâæïî DE:äëöü"
print(s,string.upper())

The following snippet is also incorrect:

s = "Programming language Lua"
string.upper(s)
print(s)

But why? The second line calls the string.upper as a procedure. However, we
know that all strings in Lua are immutable, so we cannot expect that the string will
be changed.

All these functions create a new string and use them as a ‘return’ value which
must be assigned to another variable:

s = "Programming language Lua"
s = string.upper(s)
print(s)

58

8.2.2 Reverse and replication
The string.reverse function reverses the order of characters and the string.rep
replicates the string (the first parameter) n-times (the second parameter), or separated
with the string from the third parameter.

s = "Programming language Lua"
print(string.reverse(s))

print("*********************")
print(string.rep("*",21))
print(string.rep("*",11," "))

8.3 Search and replace functions

In examples for searching and replacing, let’s assume the following assignments:

s = "Programming language Lua"
word = "language"
pattern2 = "a"

8.3.1 Simple search
Does the string s contain the word ‘language’? The function string.find searches
for the given pattern.

print(string.find(s,"a")) -- 6 6
print(string.find(s,"language")) -- 13 20
print(string.find(s,"language",12)) -- 13 20
print(string.find(s,"language",15)) -- nil

It might be surprising that two values have been returned. The values indicate
the start and end positions of the first occurrence of the pattern. The third parameter
stands for the determination of the starting point for the search. The nil value
indicates no occurence of the given pattern.

59

8.3.2 Search with classes
Character classes cover groups of characters, eg class digits stand for characters 0 to
9, upper case letter for characters A to Z, etc. Except the first one (see Table 8.1), all
classes start with the % symbol followed by a letter. If you compare class with lower
and upper case symbols, the upper case class is the complement of the lower case
class.

Table 8.1 Predefined and own character classes

symbol for the class description

. one any character

%a letters

%c control characters

%d digits

%g printable characters except spaces

%l lower case letters

%p punctuation characters

%s space characters

%u upper case letters

%w alphanumeric characters

%x hexadecimal digits

%A--%Z capital letters denote complements to
%a–%z

[...] own class; set of characters

[^...] own class; complement of the set of
characters

Let’s continue with the first class mentioned in the Table 8.1, with .. We would
like to get position of substrings covered by the pattern.

a = "square root has been computed"
b = "our new swimming pool has been closed"
print (string.find(a, '.oo.'))
print (string.find(b, '.oo.'))
as, ae = string.find(a, '.oo.')
bs, be = string.find(b, '.oo.')
print (as, ae, bs, be)

60

We can now use these indices to get the matched text, but there’s a better way: the
string.match function. It returns the matched text, or nil if the pattern is not found:
(actually, find also returns the matched text, but it first returns the indexes; match
only returns the text)

8.3.3 Getting a substring using indices
After determining the indices where the searched substring starts and ends, we are
able to use the string.sub function to get this substring:

print (string.sub (a, as, ae))
print (string.sub (b, bs, be))

8.3.4 Getting a substring using matching function
For getting the substring corresponding to the .oo. pattern (instead of indices), we
can use the string.match function. It returns the matched text, or nil if the pattern
is not found:

print (string.match(a, '.oo.'))
print (string.match(b, '.oo.'))
d = "2018/10/22"
print (string.match(d, '%D%d%d%D'))
d = "2018-10-22"
print (string.match(d, '-%d%d-')) -- stands for something else
print (string.match(d, '%-%d%d%-'))

Till now both with fixed string or with class, we were very limited because the we
can match strings with a fixed length. Therefore, there are four repetition operators
in programming language Lua to enable the work with any length, see the Table 8.2.

e = "ananas"
print (string.match(e, '.+')) -- all
print (string.match(e, 'n.+a'))
print (string.match(e, 'n%l+a'))
print (string.match(e, 'n%l?a'))
print (string.match(e, 'n%l-a'))

Own classes can be created by wrapping a group of characters in square brackets,
too. Such class will match one of the characters.

61

Table 8.2 Iterators (repetition operators)

repetition operator meaning

’*’ 0–n

’+’ 1–n (greedy)

’-’ 1–n (non-greedy)

’?’ 0–1

g = "barracuda"
print (string.match(g, 'b[ar]+'))
print (string.match(g, 'b[ar]*'))
print (string.match(g, 'b[ar]-'))
print (string.match(g, 'b[ar]?'))

h = "bus"
print (string.match(h, 'b[ar]+'))
print (string.match(h, 'b[ar]*'))
print (string.match(h, 'b[ar]-'))
print (string.match(h, 'b[ar]?'))

If the first character inside the brackets is ^, then it will match a character not in
the group.

g = "barracuda"
print (string.match(g, 'b[^ar]+'))
print (string.match(g, 'b[^ar]*'))
print (string.match(g, 'b[^ar]-'))
print (string.match(g, 'b[^ar]?'))
h = "bus"
print (string.match(h, 'b[^ar]+'))
print (string.match(h, 'b[^ar]*'))
print (string.match(h, 'b[^ar]-'))
print (string.match(h, 'b[^ar]?'))

8.3.5 Captures
Captures are sequences of characters cover by a pattern itemwhich has been enclosed
in parenthesis. Captures extract parts of the given string and return them. For getting
all captures, one has to use corresponding number of variables to by assinged by th
returned value pro the string.match function.

62

date = "2022:08:10"
y, m, d = string.match(date, '(%d+):(%d+):(%d+)')
print (d, m, y)

63

8.3.6 Substitution
The string.gsub function operates with three or four parameters. The first one is
clear – it is a string that we will use for the substitution. The second and the third
parameters specify the substring to be searched for and the string for the replacement,
respectively. By default, all possible matches will be replaced unless you tell other-
wise by the optional fourth parameter which specifies the number of substitutions.

e = "Programming language Lua"
print (string.gsub (e, "Lua", "LUA"))
print (string.gsub (e, "a", "A"))
print (string.gsub (e, "a", "A", 3))

A pair of values is returned, the modified string and the number of substitutions
made.

Classes mentioned above can be also used here:

print (string.gsub (e, "%u", "="))
print (string.gsub (e, "[aeiou]", "="))
print (string.gsub (e, "%s", "="))
print (string.gsub (e, "%a", "="))
print (string.gsub (e, ".", "="))
print (string.gsub (e, "%a-", "_"))
print (string.gsub (e, "%a+", "_"))

8.3.7 Getting the list of matches
The last function we will talk about here – string.gmatch will help us for separat-
ing the input text into substring by matching the pattern. This function belongs to
the group of so-called iterator functions that return instances of the pattern gradually
in the for loop.

s = "Programming language Lua"
for word in string.gmatch(s , "%a+") do print(word) end
 -- per words
for char in string.gmatch(s , "%a") do print(char) end
 -- per characters
for x in string.gmatch(s , "%a-[aeiou]") do print(x) end
 -- sequences ended by a vowel
d = "2021/12/31"
for x in string.gmatch(d , "%d+") do print(x) end
 -- parts of a date
h = "48656c6c6f21"
for x in string.gmatch(h , "%x%x") do print(x) end
 -- per hexadecimal digits

64

8.4 Other functions

The function string.len is an alternative to the operator #:

s = "Programming language Lua"
print(#s, string.len(s))

For string.format, see the Chapter 6.4.

8.5 Shortened syntax

In practice, programmers very often requires more effective ways how to write
some structures. Programming language Lua offers one such tools for accessing
string functions:

s = "Programming language Lua"
print(string.len(s))
print(s:len())

We can use this shortened syntax for all functions except string.char

s = "Programming language Lua"
print(s:char(101,102,103))

because in this case, there is no existing data to be converted, values 101, 102 and 103
are in no relation to the given string s.

65

8.6 UTF-8 encoding

The Lua programming language offers basic support for utf8-encoded strings. This
basic support consists of six functions that deal with multibyte characters:

utf8.char (···) -- converts byte sequence to a corresponding UTF-8 character
utf8.charpattern -- matches exactly one UTF-8 byte sequences
utf8.codes (s) -- iterates over all characters in string s
 for beginnings and ends of UTF-8 characters
utf8.codepoint (s [, i [, j]])
 -- returns the codepoints (as integers) from all characters in s
 -- that start between byte position i and j (both included).
utf8.len (s [, i [, j]])
 -- returns the number of UTF-8 characters in string s,
 -- specification of a subpart for searching with i and j is possible
utf8.offset (s, n [, i])
 -- returns the position (in bytes) where the -encoding of the
 -- n-th character of s (counting from position i) starts

66

Questions

(1) What does ‘immutability’ stand for?

Exercises

(2) Write patterns which check whether the input line contains:
(a) name and surname only.
(b) file name (letter, dot, 3 letters, only letters or digits) only,
(c) price (number plus 3-character-long abbreviation of a currency).

(3) What will you get into the variable result?

e = "Programming language Lua"
result = ((e:gsub ("Prog", "B")

):gsub("amm","i")):gsub("ing","lliant")

(4) Get the length of the specified character string.
(5) Print a list of words from the given string. (Assume that words are separated

by spaces.)
(6) Prepare the list of words from the given file (read them from the standard input).
(7) Prepare a frequency table of words from the given file (read them from the

standard input).

67

9 Tables

Simple data types are intended to describe one data (one number, one string, one
logical value). In practice, however, there are many situations where an object is
described by several pieces of data.

Consider, for example, an automobile. For each car we want to specify the manu-
facturer (factory brand), the type, the engine capacity v cm3, color, number of axles,
number of doors, etc. Each characteristic separately can be described by some suit-
able simple data type: the manufacturer will be of type string, engine capacity of type
integer number, etc.

Description of the whole car by these simple data types will not be acceptable,
because for we have to declare a completely separate variable for each property, isol-
ated from the other variables describing other properties.

Similarly, we can imagine a chessboard of size 8𝑡 𝑖𝑚𝑒𝑠8 squares. If we wanted to
create a chessboard with 64 squares, we would have to create 64 variables that would
be described by a simple data type. There is, as in the previous case, no binding
between them. We have at our disposal 64 separate, isolated variables.

That is why programming languages introduce so-called structured data types,
structured data types. For example, vector (one-dimensional array), matrix (mul-
tidimensional array), record (struct), often implemented by an associative array, or
various types of sets. Structured data types differ from each other both in their struc-
ture and the operations that can be performed.

In Lua, as a consequence of minimizing the overhead, which we have already
mentioned in the Introduction, there is only one structured data type called table.
And it is up to us how we use it, i.e. what it represents for us.

To be precise, the structured data types also include data type file. However, this is operating system and
hardware dependent. Mainly, however, we do not access the data in the file directly, but through services
provided by the operating system. This makes files very different, which is why we devote a separate
chapter to them.

9.1 Table initialisation – constructor

A table as a complex and sometimes relatively complex data structure cannot be
created just like that ‘by itself’. Practically, a variable of type table is not stored
directly in memory, but contains a reference to other memory location where the
table’s own data is located. This reference is called a pointer and is actually the
address of that other memory location.

The space reservation (allocation) and its address are stored in a variable of type

68

table, when we use the so-called table constructor. If we want to create an empty
table, we use this notation:

t={}

9.2 Table as an 1D array (vector)

The following two code snippets do the same thing – they both create a table and
insert into it the first few values into the table.

t={}

t[1]=1 t[2]=2 t[3]=7
t[4]=5 t[5]=13 t[6]=-1

--

t={1,2,7,5,13,-1}
t={1,2,7,5,13,-1,}

This constructor also contains values. They are separated by a comma. Test that
an extra comma after the last value does not cause any error.

All values are of the same data type, so we are talking about a homogeneous field.
As the example shows, the individual components of the array (table) are accessed
by appending a more precise determination after the table identifier, that is, an index
into that array. All kinds of arrays where values are inserted in this way ‘one another’
and can be accessed by numeric indices, we also call them indexed arrays.

t={1,2,7,"Lua",true,{},-9.9999,false,8888}

This example of the constructor shows a case where the values are not of the same
data type, there are a mixture of numbers, strings, booleans and, moreover, another
table constructor is present, too.

These types of arrays (tables) are called heterogeneous arrays and can also be
indexed.

69

9.3 Table: insert, remove, number of elements, list of elements

The recommended method to insert additional values into the table, or to remove
values from the table are the insert and remove functions. The first parameter is
always the table. The value is always inserted at the end of the table, in the case of
removals, also from the end of the table. The second parameter is the inserted value.

The following code also shows a direct insert to the next position in the table via
the index, which was calculated by the expression last used index (#t) + 1.

t = { 5, 10, 20, 30, 60 }
print (#t) -- 5
table.insert(t,88)
print (#t) -- 6
t[#t+1]=99
print (#t) -- 7

Remove any element from the table with the remove function:

table.remove(t)

Naturally, after the many manipulations with the table, we are interested in what
we actually have stored in table t. Since it is an indexed array, we can use the follow-
ing loop:

for i=1,#t do print (t[i]) end

And what if we want to insert the data in a different position than the last one?
Just use the extended entry of the insertion subroutine, where we also specify the
position. This is given as the second parameter and the value to be inserted becomes
the third parameter.

Similarly, modify the entry for the subroutine for removing – add the position
from which we want to remove.

The advantage of using these subroutines is that they automatically take care of
reindexing the remaining elements of the table.

table.insert(t,3,777)
table.insert(t,1,111)
table.remove(t,2)

And now we can list the table again in the familiar way.

70

9.4 Solved exercises

Determine the average of values in a table.

local a = {5, 3, 2, -1, 9}
local sum = 0
for i=1,#a do
 sum = sum + a[i]
end
print (sum/#a)

For avoiding division by zero at (unwanted) empty table, we can print out the
result only conditionally:

if #a>0 then print (sum/#a) end

Find the minimum value in a table. In this example, we will use the more gen-
eral way which is not restricted only an interval <1;n> as was used in the previous
example.

local t = {1, 3, 7, 6, 4, 0}
local index, maxvalue = 1, t[1]

local key, maxvalue = 1, t[1] -- temporary maximum
for k, v in ipairs(t) do
 if t[k] > maxvalue
 then key, maxvalue = k, v
 end
end

print(key, maxvalue)

This algorithm will keep the original order of values. If it is not necessary, one
can use also this trick:

local t = {1, 3, 7, 6, 4, 0}
table.sort(t)
print(t[1])

71

9.5 Sorting

There are a number of methods for sorting values and also quite extensive theory.
We will skip the theoretical analysis at this point because the sorting algorithm in
the pre-prepared sort subroutine is very efficient. The following code snippet shows
how to simply write the sort of the indexed data. However, data homogeneity is a
prerequisite, so it is not possible to sort numbers and strings at the same time.

t = { 1, 3, 5, 2, -3, 8, 0, -11 }
table.sort(t)

The sort subroutine makes it very easy to change the sorting algorithm. If we
want to sort in descending order (not ascending as it is normally), we add a second
parameter. This parameter will be of function type. And it does not matter whether
we will write the body of the function directly into the parameter, or whether we will
declare the function first and then just put its identifier here. So both of the following
examples lead to the same result.

t = { 1, 3, 5, 2, -3, 8, 0, -11 }
table.sort(t, function (a,b) return b<a end)

Písmeny a a b symbolicky označuje dvě hodnoty, které vstupují do porovnání, jež
součástí každého řadicího algoritmu.

function myf (a,b)
 return b<a
end

table.sort(t,myf)

for i=1,#t do print (t[i]) end

Wewill always prefer the latter way if the samemethod of comparison of values is
used in multiple places in our program or if the comparison algorithm is so complex
that it would make the program code very cluttered.

72

9.6 Table as a hash

The associative field can be understood as a structure that carries within itself
information about the meaning of values. In short, this approach is often called key-
value system. In practice, this means that each value is named.

t={}

t["jan"]=31
t["feb"]=28
t["mar"]=31

t.jan=31
t.feb=28
t.mar=31

The example shows that the Lua programming language allows two approaches to
values – first, we can use keys as strings as ‘indexes’ in a table, and the key becomes
an identifier that we append to the table name with a period. Both notations have
the same meaning.

Now we would like to take another look at what is in this table. Commands

print (t)
for i=1,#1 do print(t[i]) end

will not satisfy us – the first one returns a response of type table: 0x560b808666f0,
which only indicates that the table will be present somewhere in memory, and the
second one does not provide any response. This is becausewriting #t herewill return
zero (the for loop cannot run even once), which is the number of items indexed by
numbers. The items of the associative array accessed via keys are included in this
count are not included.

We have to use a different method:

for k,v in pairs(t) do
 print(k,v)
end

In this way, we encounter a variant of the for cycle commands, which acquires
non-numeric values, but values from the list created by the pairs function. Here, by
pair we mean just a key-value pair, and by list we mean a sequence of these pairs.
Thus, each pass through the loop processes one pair.

If you run this loop multiple times in succession for the same values, it may be

73

surprising for you that the order of the keys is different each time. Therefore, the
order of of the values in the associative array will never be relied upon.

If we want to get a predetermined order of keys – a typical example is alphabetic-
ally ordered list – we need to prepare the order of the keys in advance.

We will show it in a zoo task, which for each kind of animal records the number
of pieces.

local zoo={}

zoo["gepard"]=3
zoo["lynx"]=6
zoo["parrot"]=28
zoo["horse"]=14
zoo["eagle"]=6

local keys = {}
 for k,_ in pairs(zoo) do
 table.insert(keys,k)
 end
 table.sort(keys)

 for i=1,#keys do
 print (keys[i],zoo[keys[i]])
 end

The first loop goes through the table with the animals and keys, stores in the keys
table. The pairs function returns a pair of values, but the associated value we don’t
need for further work. This unneeded value is stored in a variable called _, which is
a perfectly normal variable (it could easily be v), but in practice it is common to use
_ to indicate that this value is not processed further.

The second loop then loops through the sorted key table and selects from table of
animals.

Note the double indexing (zoo[keys[i]]).

9.7 Searching in an array

A very common activity when working with tables is to find a value. Assume that
the table now behaves like an array, i.e. it has a set of values stored in it. As an idea,
we can use the list of pupils in this classroom, to which the teacher gradually adds
individual names as the pupils arrive:

A very common activity when working with tables is to look up a value. Suppose
now that the table behaves like an array, i.e. it has a set of values stored in it. As an
idea, we can use the list of pupils in this classroom, to which the teacher gradually
adds individual names as pupils arrive.

74

class = { "Bob", "Paul", "Amy", "John", "Susan", "Roger", "Audrey" }

Now we are interested if Amy came to the class as the second (third, ...) person.

print (class[2] == "Amy") -- false => Amy was not the second
print (class[3] == "Amy") -- true => Amy was the third

If we do not know the number of Amy’s arrival, we how to iterate through all
values:

local i = 0
local who = "Amy"
repeat
 i = i + 1
 print(i,class[i],class[i]==who)
until class[i] == who
print(who,i) -- Amy's order
print(class[i] == who) -- binary answer: Amy is/is not here.

1 Bob false
2 Paul false
3 Amy true

The first function print will show how the loop will work. First two runs did
not find Amy. Therefore, the condition was evaluated as false. The third rum was
succesfull, the loop ends up and the second print function gives us the result.

However, the snippet has red borderwhich indicates that there is somethingwrong
with this code. Are we able to answer if Eve came too? Let’s assign "Eve" to who
instead of "Amy" and execute the code once more.

Problably you will have interrupt the run pressing Ctrl-C.
To resolve this problem, we have to add one more condition:

repeat
 ...
until i==#class or class[i] == who
print(class[i] == who) -- binary answer: Eve is/is not here.

The additional condition stops the loop after checking the whole array, regardless
of whether she came or not.

75

9.8 Conversion array to hash

After changing the organization of the data structure of the table from an array to
a hash, there must also be a change in the procedures leading to finding out whether
the student is present or not, or what is the order of his/her arrival in class.

First, let’s see how to convert an array to a hash:

hashclass = {}
for i=1,#class do
 hashclass[class[i]] = 1
end

Nyní se stačí zeptat takto:

print (hashclass["Amy"] == 1) -- true, value 1 found at Amy
print (hashclass["Eve"] == 1) -- false, no value for missing student

However, we can simplify it using the operators and and or.

who = "Amy"
print (hashclass[who] and "PRESENT" or "missing")
who = "Eve"
print (hashclass[who] and "PRESENT" or "missing")

If the student is in the classroom, hashclass[who] must exist. Therefore, the its
value exists too (evaluated as true).

For missing students, no information will be found, so the first part will be eval-
uated as false. This will cause that the part and "PRESENT" will be skipped and
the value missing becomes as a result of this expression.

We can assign the value of i instead of value 1 to the given name. So that means
that this solution will store the order of students’ arrival in the class:

hashclass = {}
for i=1,#class do
 hashclass[class[i]] = i
end

Now we are able to answer both questions:

76

who = "Amy"
print (hashclass[who] and ("PRESENT: "..hashclass[who]) or "missing")
who = "Eve"
print (hashclass[who] and ("PRESENT: "..hashclass[who]) or "missing")

9.9 Array and hash together

t = { 10, 20, 30, 40, 50 }
t.name = "Challenge"
t.type = "yacht"
t.year = 2000

The table data type allows storing both indexed and associated values at the same
time. We can create such an array quite easily: However, we have to write the values
in two goes:

-- indexed part
for i = 1,#t do print (i, t[i]) end
-- key-value part
for k,v in pairs(t) do print (k, v) end

9.10 Table as an 2D array (matrix)

9.10.1 Initialization, constructor
We have already met the one-dimensional field in the preceding text. Now let’s see
how to create a two-dimensional array. Let’s start with an example that shows a
certain, often occurring error of carelessness.

t = {}
t[1][1] = 1
t[1][2] = 2 -- etc.

After introducing the table with the constructor, we started trying to assign to cer-
tain positions in the matrix. It is possible to assign a number to t[1] but not a table
(the second dimension is also a table! which must be initialized before) as indicated
by the error message attempt to index field '?' (a nil value).

77

print(type(t), type(t[1]))

So the right ways are:

t = {}
t[1] = t[1] or {} -- if we need initialization on the fly
for i=1,5 do t[i] = {} end -- if we know number of rows in advance

t = { {}, {}, {}, ... } -- empty 2D-array
t = { { 11, 12, 13}, { 21, 22, 23 }, { 31, 32, 33 } }
 -- if we know even values in advance

9.10.2 Displaying values of a two-dimensional array
For displaying values of a two-dimensional array we need two nested loops for:

for i = 1, #t do
 for j = 1, #t[i] do
 io.write(t[i][j], "\t")
 end
 io.write("\n")
end

Here we have used simplified formatting using tab (\t) and line breaks (\n), it
is of course better to use the string.format function and adapt the listing to our
needs.

9.10.3 Algorithms for matrices
Transposition of an array means swapping rows and columns.

tm = {}
for i=1,#t[1] do tm[i] = {} end

for i = 1, #t do
 for j = 1, #t[i] do
 tm[j][i] = t[i][j]
 end
end

Then print out the matrix using the algorithm above.
Print the values from on the main diagonal of this matrix. Here we will need only

one loop because the main diagonal is a vector, not a matrix:

78

for i=1,#t do
 print (t[i][i])
end

Display the value lying on the next line of the same column. Assume coordinates
r and c for the row and the column, respectively.

print (t[x] [y]) -- this value
print (t[x+1][y]) -- value from the next line

The second line of this code will produce an error if x is equal to the last index.
(x+1 will not exist.)

if t[x+1] then print (t[x+1][y]) end -- conditional print #1
print (t[x+1] and t[x+1][y] or "n/a") -- conditional print #2

9.10.4 A more general way to display values of a table
We gradually work with more and more complex table structures. With this, the com-
plexity of writing out the table also increases, which complicates life when debugging
programs. It would require creating a tool that could list any table regardless of its
internal structure. This tool is presented in Chapter 11.3, so we recommend that you
read that chapter now. The tool is called myinspect and it is a function whose para-
meter is the table identifier. Its contents will be written to standard output. Generally,
the process of creating this is called table serialization. On the Internet, you can find
other, similar functions designed for the same purpose.

79

9.11 Table as a set

Typical operations in a set are the union, intersection and difference of two sets
and finding the cardinality of a set. Next, we will need to create an empty set, then
add and remove an element, and check if the element is in the set.

We will also implement the set using a table. We first have to create a set:

set = {} -- empty set
set = {[3]=true, [4]=true, [8]=true} -- set with first three elements

The second method is somewhat more demanding to write, so it is only worth-
while for a smaller number of elements with which we initialize the set.

We can verify the content of the set by listing it.

for k,v in pairs(set) do print (k, v) end
for k in pairs(set) do print (k) end -- v is not necessary here

The following two command will not live to our expectations. The first of them
will not produce anything because the value #set is not defined, we do not workwith
this table as with typical array. And the second one? It will dislay only a part of the
set so we have to be sure that all values belong to the interval <1; 10>. Moreover,
it will display plenty of elements which we are not interested in.

for i=1,#set do print (i, set[i]) end
for i=1,10 do print (i, set[i]) end

If we want to add another element to this set, it is enough to write: Removing an
element from the set here means removing the corresponding element from the table,
which we ensure by setting the value nil to the corresponding index in the table.

set[3]=true
set[5]=true
set[4]=nil

For the next three operations, assume two existing sets:

set1 = {[3]=true, [4]=true, [8]=true}
set2 = {[1]=true, [4]=true, [12]=true, [15]=true}

80

Union:

new = {}
for k in pairs(set1) do new[k] = true end
for k in pairs(set2) do new[k] = true end

Intersection:

new = {}
for k in pairs(set1) do new[k] = set2[k] end

Difference:

new = {}
for k in pairs(set1) do
 if set1[k] and not set2[k] then new[k] = true end
end

Cardinality:

c = 0
for k in pairs(set1) do c = c + 1 end
print(c)

81

10 Functions (subroutines)

Every well-written program should be clear. One possibility, to increase its clarity
is to separate out some of the separate parts into separate sections of the program,
called subroutines, whose purpose is to perform a predefined action.

In the Lua programming language, we have only one dedicated word for for declar-
ing subroutines – function. Thus, in terms of syntax, we are talking only about func-
tions.

However, in terms of semantics, we can distinguish two common, from many
other programming languages that are known to use subroutines – use as procedures
that ‘only’ perform a certain action, and use as a function, i.e., after performing an
action, usually a computation the function passes the result to the parent structure
(we say that the function returns value).

These are usually named sections (we will discuss one exception later), which
means that each function has its own name – an identifier, which may be followed
by parameters in round brackets.

10.1 Declaration and parameters

Each subroutine must first be declared, i.e. the chosen name is assigned a certain
sequence of commands. The use of a subroutine is called subroutine call, or in the
case of a procedure, command procedure.

function print_two_numbers (number1, number2)
 print ("Two numbers: ",number1, number2)
end

print_two_numbers (10,99)

The function name, i.e. the function identifier, is therefore Pi. The sequence of
statements within the function will consist of one statement that assigns the function
identifier to the resulting value.

82

function sum_of_two_number (number1, number2)
 local sum = number1 + number2
 return sum
end

a = sum_of_two_number (10, 99)
print (a) -- or
print (sum_of_two_number (10, 99))

10.2 Recursion and recursive functions

The command part of the subroutine can contain calls to other subroutines, either
procedures or functions. Special case, where a subroutine calls itself is called a recurs-
ive call or recursion, or recursion!direct.

For indirect recursion we need at least two subroutines, e.g. R and S. The sub-
routine R calls the subroutine S and then in its command part calls again subroutine
R.

We can use recursion effectively to solve problemswhose algorithm is itself recurs-
ively defined, such as the factorial or the greatest common divisor (GCD).

𝑛! = {
1, if 𝑛 = 0

𝑛 ⋅ (𝑛 − 1)! for 𝑛 > 0

GCD(a,b) =
𝑎, je-li 𝑎 = 𝑏
GCD(𝑎 − 𝑏,𝑏), je-li 𝑎 > 𝑏
GCD(𝑎,𝑏 − 𝑎), je-li 𝑎 < 𝑏

Note the important fact that in every definition of a recursive algorithm a specific
value (1) is prescribed for a well-defined situation (n=0). This property causes the
algorithm to be finite.

function GCD(X, Y)
if x==y then return =x
 else if x>y then return GCD(x-y,y)
 else return GCD(x,y-x)
 end

cislo1, cislo2 = io.read("*n", "*n")
print(GCD(cislo1, cislo2)

GCD is a function, so there must be an assignment statement to assign a value

83

to the GCD identifier. The greatest common divisor (see above) is defined for three
situations (a=<>b) differently, and so the functionmust assign values in each variant;
this is why the assignment statement is used three times.

Calculating the greatest common divisor by the recursive algorithm is not very
convenient. Each time the function GCD is called, the takes up memory unnecessarily.
In general, problems that can be solved by both recursion and looping, are less time-
and space-consuming if we use a solution without recursion.

For recursive solving, problems that use the system stack, which is a memory
that contains the local variables of the called (a so far terminated) subroutines. An
example of such a task might be a program that takes input strings as output the
strings in the reverse order from that in the input file.

10.3 Function as a data type

The subroutine data type allows the activity of another subroutine to be influenced
in a certain way by various other subroutines with corresponding parameters during
the program’s runtime.

The example that shows this tools is given at table.sort function.

10.4 Iterators and closures

At one website4 I found nice explanation of closures: ‘Closures are hard to describe.
But [...] "You know it when you see it."’

In simple words, a closure is a function inside a function where the inner function
can see local variables of the outer function. Closures can be used for a variety of
powerful features. For us, the most important point is use within so-called iterators.

An iterator is any construction, in programming language Lua typically a function,
that iterates over the elements (in Lua in a table). Each time we call that function, it
returns one of the elements from the given table.

In the previous chapter dealing with tables we met functions pairs, ipairs and
lines (this one will be used also in the Chapter 14). They iterate over key-value
pairs and lines, respectively, and these values are gradually processed by for loop.

10.4.1 User iterators
The principle will be shown on user iteration function which will produce values
from even indices of a table.

4 http://www.troubleshooters.com/codecorn/lua/luaclosures.htm

84

function only_at_even_indices(t)
 local i, n = 0, #t
 return function ()
 i = i + 2
 if (i <= n) then return t[i] end
 end
end

Then we can process a table:

t={21,12,3,4,15,29,12}
for value in only_at_even_indices (t) do print(value) end

This function returs only values. If we need only the corresponding indices, we
change the return command:

function only_even_pairs(t)
 local i, n = 0, #t
 return function ()
 i = i + 2
 if (i <= n) then return i, t[i] end
 end
end

Then we can process a table:

t={21,12,3,4,15,29,12}
for index, value in even_pairs(t) do print(index, value) end

85

Questions

(1) What is a subroutine?
(2) What are subroutine parameters used for?
(3) How do we distinguish subroutines in terms of semantics?
(4) What is structured programming?
(5) What are subroutine parameters and what are they used for? %cvicitem What

is a function call?
(6) What must a function contain within its statement part in order to the result of

a computation to be used at the location of the function call?
(7) What are recursive subroutines?
(8) How do we ensure that a recursive subroutine is not infinite?

Exercises

(9) Write a procedure that prints a series of asterisks. Number of stars is given as
a parameter to the procedure.

(10) The function signum is defined so that for positive values of the parameter, it
gives a value of 1, for negative −1, and for zero it gives 0. Build this subroutine
and use it.

(11) Create a function that computes the following in a Cartesian coordinate system
the distance between two points. The coordinates of these two points are the
parameters of the function.

(12) Use the function constructed in the previous problem in a program that obtains
the coordinates of the vertices of a triangle from the input file and calculates its
perimeter.

For these exercises, all input values will be used as parameters of functions.
Some of the problems are very similar to some of the problems in the previous chapters.

Feel free to use these solved problems here.

86

Questions

(13) Create a Lua function to calculate the root of the linear equation 𝑎𝑥 + 𝑏 = 0 (i.e.
the value of 𝑥).

(14) Create a Lua function to determine the minimum of two given numbers.
(15) Create a Lua function to find the absolute values of the difference of two given

numbers.
(16) Create a Lua function to determine whether or not a given number is even.
(17) Create a Lua function to determinewhether a given number is positive, negative,

or zero.
(18) Create a Lua function to calculate the perimeter of a triangle given by the

lengths of its three sides.
(19) Create a function in Lua to calculate the perimeter of a right-angled triangle

given by given by the lengths of its sides.
(20) Create a Lua function to determine whether a triangle given by its lengths is of

its sides is equilateral, isosceles, or rectangular.
(21) Create a Lua function to retrieve three values and list them in ascending order

(listing from smallest to largest).
(22) Create a Lua function to calculate the roots of a quadratic equation based on

given coefficients 𝑎,𝑏,𝑐, where 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.

87

11 Modules (libraries)

A library is usually an isolated piece of code that contains of code that already con-
tains separate subroutines. The purpose of libraries is to speed up the creation of
programs, since many subroutines can be used in a variety of programs. The creator
of these libraries creates his subroutines once and for all and then just uses them.
Libraries can be divided into two types according to their origin:

standard libraries – They are created by the creator of the language implementa-
tion, the subroutines contained in them are suitably supplement the basic resources.
Declared variables Variables and subroutines are listed in the documentation.

user libraries – The creator can be anyone. User libraries usually cover specific
needs of the programmer.

11.1 How to create own library

Unlike most programming languages, where libraries are a three-part file (eg. Pas-
cal) – interface, implementation and initialization parts and sometimes (e.g. in C++)
even with a split into two files, is to create a library in Lua very simple – it is a single
file containing both the declarations functions, as well as any initialization (execu-
tion) part.

Since the interface is not a separate part here, it is necessary to have the in mind
that all subroutines and data structures are accessible from other libraries or from
the main program, i.e. global. If we do not want to make some library elements
accessible, we must mark them as local, using the reserved word local.

The following code shows the simple library for some triangle computations. The
whole has to be saved as a separate file (let’s call it mytriangle.lua):

local mt = {} -- mt = mytriangle
function mt.circumference (a, b, c)
 return a+b+c
end
function mt.area (a, b, c) -- Heron's formula
 local s = mt.circumference(a,b,c) / 2
 return math.sqrt(s*(s-a)*(s-b)*(s-c))
end

return mt -- important!

88

This is the second way how to prepare a library:

local mt = {} -- mt = mytriangle
mt.circumference = function (a, b, c)
 return a+b+c
end
mt.area = function (a, b, c) -- Heron's formula
 local s = mt.circumference(a,b,c) / 2
 return math.sqrt(s*(s-a)*(s-b)*(s-c))
end

return mt -- important!

11.2 Joining the library

The library will be joined by the function require followed by the library file-
name (without the extension .lua:

local m = require "mytriangle"
io.read(a,b,c)
print(m.circumference(a,b,c), m.area(a,b,c))

89

Questions

(1) What is a Lua library?
(2) What can a library contain?
(3) What is the difference between a standard library and a user library?

Exercises

(4) Add to the library mytriangle (a) calculation of the area of the triangle using
the side and the corresponding height, (b) calculation of the area of a triangle
using two sides and an internal angle.

(5) Build a library of math functions that are not
(6) Build a library of mathematical functions that are not not implemented in Lua,

e.g. tangent, arc sine, arc cosine, decadic logarithm, third root, 𝑛-th power, etc.

90

11.3 Inspect

local output, indent, width = io.write, 0, 3

local fout = function (x) output (tostring(x)..",\n") end
local fempty = function () end
local fboolean = function (x) fout (x) end
local ffunction = function (x) fout ("function") end
local fnil = function () fout ("nil") end
local fnumber = function (x) fout (x) end
local fstring = function (x) fout ('"'..x..'"') end

local typelist = {
 ["string"] = fstring, ["nil"] = fnil,
 ["number"] = fnumber, ["function"] = ffunction,
 ["boolean"] = fboolean,
}

myinspect = function (d)
 local typed = type(d)
 local fprint = typelist[typed] or fempty
 if typed == "table"
 then
 if indent == 0 then output("table = ") end output("{\n")
 indent = indent + width
 for k,v in pairs(d) do
 output ((' '):rep(indent) .. '["' .. k .. '"] = ')
 myinspect(v)
 end
 indent = indent - width
 output ((' '):rep(indent) .. " },\n")
 else
 fprint(d)
 end
end

return myinspect

91

12 Abstract Data Types

By the term abstract data type (ADT) we mean a set of data types (values) and
operations associated with them, which are precisely specified independently of a
specific implementation. Using ADT, we usually create a model of a more complex
data type close to reality, but for the implementation of which we do not have direct
tools in the given programming language. However, we use the existing tools in the
given programming language to implement the ADT. The advantages of ADT are
that:

• ADT is determined by what we want/need in it.
• ADT can be implemented in different ways without affecting its behaviour.
• ADT is implemented using a suitable data structure.

To describe ADT,we can use a graphicmethod – a signature diagram, an axiomatic
method, or we can also express it in a programming way in the form of an ADT user
interface.

12.1 Axiomatic description for ADT Queue

Assume that we will need the following five operations (functions, methods) for
ADT Queue:

init(_) : --> queue
count(_): queue --> number
empty(_): queue --> boolean
put(_,_): queue, data --> queue
get(_): queue --> data

The parenthesis describe number of parameters, to the left of the arrow we have
data types of these parameters and to the right we see the data type of the return
value for a particular method.

12.2 Implementation of the ADT Queue

The following code is the content of the new module file, eg. module_queue.lua.
For more comfortable work, the print function has been added:

92

local Q = {}

Q.init = function (t)
 local q = {}
 for _, l in ipairs(t) do table.insert(q,l) end
 return q
 end
Q.put = function (t,e) table.insert(t,e) end
Q.get = function (t)
 local e = table.remove(t,1)
 return e
 end
Q.count = function (t) return #t end
Q.empty = function (t) return #t==0 end
Q.print = function (t)
 for i=1,#t do io.write(t[i]," ") end
 print ()
 end

return Q

As you can see, we implement the queue using the data type table and we used
the tools that programming language Lua provides for working with tables to the
maximum extent.

12.3 Interface for a user

Interface for a user can be derived from the axiomatic description as well as from
the implementation – we used function headings:

queue = Q.init (queue)
 Q.put (queue, data)
data = Q.get (queue)
number = Q.count (queue)
boolean = Q.empty (queue)

Then we can use it in our main program:

93

Q = require "module_queue"

myqueue = Q.init{} -- empty queue or
myqueue = Q.init{"John"} -- John was standing at the counter before it opened.

Q.put(myqueue,"Susan")
Q.put(myqueue,"Paul")
Q.put(myqueue,"Mark")
Q.print(myqueue) -- Who is in the queue?
print(Q.get(myqueue,"Mark")) -- First customer served.
print(Q.count(myqueue)) -- Number of pending customers' requests
print(Q.empty(myqueue)) -- Can I close the counter now?

12.4 Module for set operations

The following code follows the code from the previous chapter dealing with tables.
It contains the adapted code for union, intersection, difference and cardinality. All of
them are written as functions and the whole must be stored as independent module
file (eg. module_set.lua).

94

local Set = {}

function Set.new (init)
 local set = {}
 for _, element in ipairs(init) do set[element] = true end
 return set
end

function Set.union (set1, set2)
 local newset = Set.new{}
 for element in pairs(a) do newset[element] = true end
 for element in pairs(b) do newset[element] = true end
 return newset
end

function Set.intersection (set1, set2)
 local newset = Set.new{}
 for element in pairs(set1) do newset[element] = set2[element] end
 return newset
end

function Set.difference (set1, set2)
 local newset = Set.new{}
 for element in pairs(set1) do
 if set1[element] and not set2[element]
 then new[element] = true
 end
 end
 return newset
end

function Set.cardinality (set)
 local c = 0
 for k in pairs(set) do c = c + 1 end
 return c
end

return Set

And use of the module in our main program follows:

S = require "module_set"

a = S.new{1,2,4}
b = S.new{10,2,40}
c = S.union(a,b)

for k in pairs(c) do
 print (k)
end

95

12.5 Module for set operations with a metatable

Metatables allow us to change the behaviour of a table. The use of metatables will
be shown here, with sets but it is a general way how to simplify writing operations
that have been implemented using tables.

From the operators point of view this expansion, ie. adding additional properties
is called operator overloading.

In Lua, there are three steps to be done now:

(1) We have to create new and empty metatable table.
(2) Then we have activate the metatable mechanism.
(3) And finally, we have to assign functions that have been implemented for

particular set operations to the corresponding operators.

...
Set.mt = {} -- step 1
...
function Set.new (init)
 local set = {}
 setmetatable(set, Set.mt) -- step 2
 for _, element in ipairs(init) do set[element] = true end
 return set
end
... -- step 3
Set.mt.__add = Set.union
Set.mt.__mul = Set.intersection
Set.mt.__sub = Set.difference
...
return Set

In the main program, we can now use operator +, * and - for union, intersection
and difference of sets, respectively:

s1 = Set.new{5,9,13,17}
s2 = Set.new{1,13,21}

su = s1 + s2
sd = s1 * s2
si = s1 - s2

Isn’t it beautiful?

96

13 Files

The term file refers to the portion of disk space that containing certain data. Regard-
less of the type of device, such as hard disks, floppy disks, virtual disks or CD-ROMs,
the files are accessed in the same way in a programming language environment. The
actual actions are handled by the operating system used, and we do not have to deal
with the properties of the data carrier used when writing programs.

Each file is marked with a name within the disk space and the access path. These
two pieces of information ensure that the file is uniquely identified.

In terms of file processing, we can classify files according to various criteria.

(1) According to the use of control characters:
– text files,
– non-text files with the specified data type,
– non-text files with no type specified.
We consider text files as character files in that the file is internally organ-

ized internally into lines. The end of the lines is marked with the agreed
control characters.

(2) Depending on the type of file handling:
– read-only files,
– write-only files,
– both read and write files.

(3) Depending on how the data in the file is processed:
– files processed sequentially,
– files with direct access.

This main division is general and does not depend on the programming language
used. We have to keep in mind that the physical, real form of the file is always the
same and that the above division refers to the exclusively our work with the file, our
our logical approach to the file. Now let’s briefly explain what is meant by each
criterion.

13.1 Difference between text and binary files

If we decide to consider file as text, it means that the information inside should
be understood as follows:

• Characters whose ordinal value is less than 32 are treated as control char-

97

acters, i.e. a predefined action is performed These characters may not be
displayed in the output.

• Characters whose ordinal value is 32 or greater are the carriers of of textual
information.

The files are the opposite of text files, i.e., they are processed a non-text file, char-
acters with ordinal value are not considered control characters, but are treated as any
other data.

Binary files are further divided into two groups according to the data stored. If
all the data is of the same type, e.g. only numbers real or just characters, or just
records, etc., then we speak of the files with the specified data type.

Binary files without a specified data type may contain data of different data
types, i.e. a mixture of numbers, characters, records, sets, strings, etc. In this case, it
must be known which data types and in which order they should appear in the file.

13.2 Access to a file

By the declaration of a data file variablewemust imagine something other than the
variables of all other data types. The declaration does not create a file in operational
memory, but a data structure that contains all the information about the file that is
needed to to communicate with the operating system. The actual file, of course, still
resides on external, usually disk, memory.

The created data structure, or a pointer to it, is passed as a return value of the
function io.open and we store it in the variable f:

local f = io.open(filename, "r")

local f = assert(io.open(filename, "r"))

13.3 Open

Information on how to open the file is also part of the file disclosure. The letter
"r", which we have used here, means open for reading. An overview of the other
ways of opening the file, i.e. the ways we will process the data, is given in table 13.1.

Open a file operation is the action that, when successfully executed the operating
system allows us to continue working with the file and its contents.

A read-only file allows only data retrieval. A file open for writing allows only the
storage of data. A file that is open for both activities allows data to be retrieved and
storage.

98

13.4 Close

Close a file is the action we communicate to the operating system, that the file
will no longer be used.

We perform file opening and closing with each file regardless, whether we process
it textually or non-textually, regardless of whether the file or read-only or write-only
or both.

13.5 Data reading methods

We always treat text files as read-only files or for writing, not both. In contrast,
non-text files can be handled in all three ways. Data processing in a file is done either
by processing (sequential), or direct access.

Sequential processing means that the data is processed from file are read sequen-
tially in the order in which they are written. When reading, it is not possible to to go
back or skip elsewhere. Sequential file processing is used with text files (for these it
is only option), and sometimes for other file types.

Direct access to the data in a file means that each folder in the file has its own
serial number. We can use this number to jump to a particular folder. We use this
method when working with binary files.

Table 13.1 Modes for opening files

Mode Description

"r" Read-only mode and is the default mode where an existing file is opened.

"w" Write enabled mode that overwrites the existing file or creates a new file.

"a" Append mode that opens an existing
file or creates a new file for appending.

"r+" Read and write mode for an existing file.

"w+" All existing data is removed if file exists or
new file is created with read write permissions.

"a+" Append mode with read mode enabled that
opens an existing file or creates a new file.

The io.read function reads strings from the current input file. Its arguments con-
trol what is read:

99

Table 13.2 Modes for reading values from a file

Mode Shortcut Description

"*all" "*a" reads the whole file

"*line" "*l" reads the next line

"*number" "*n" reads a number (including leading whitespaces)

𝑛𝑢𝑚 reads a string, its length is determined by the 𝑛𝑢𝑚 values

13.6 Processing of text files – solved examples

Create a frequency table of the words found in the given text file.

local f = io.open("a.a","r")
local words = f:read("*a")

t = {}
for w in words:gmatch("%a+") do
 t[w]= (t[w] or 0) + 1
end

for k,v in pairs(t) do print (k,v) end

Reading mode *a joined the whole file into one very long line (words). Then,
using words:gmatch, we are extracting words (=sequences of letter; %a+). For each
word, its own counter is incremented by 1.

When we get a word for the first time, its counter does not exist yet (t[w] is nil,
ie. false). Therefore, the expression t[w] or 0 has been used and for non-existing
counter it works with value 0.

For counting lines in a text file, there no built-in tool in Lua. We can use func-
tion io.lines (so-called line iterator) for gradual getting all lines. The function
io.lines will work without explicit file opening:

local n = 0
for _ in io.lines'yourfile.txt' do
 n = n + 1
end
print(n)

The air conditioning in the apple warehouse can be in four states: heating (0),

100

tempering (10), cooling (110), off (111). Each change is recorded in a text file. The
information was recorded in text form on a file. Find out how many times the tem-
pering condition occurred during the monitored period:

local codes = { ["0"] = 0, ["10"] = 0,
 ["110"] = 0, ["111"] = 0, }

local code = ""
local f = io.open("apples.txt","r")
local b = f:read(1)

while b do
 code = code .. b
 if codes[code] then
 codes[code] = codes[code] + 1
 code = ""
 end
 b = f:read(1)
end

print(codes["10"])

For testing the program, use this data (omit spaces when writing values on a file):

11101011 01000110 11011101 01100110

13.7 Binary files

As a binary file for the first attempt, we will use any file in PDF format, because
in most cases these are non-text.

Let’s read the first five bytes and display their ordinal values:

local f = io.open("a.pdf", "rb")
local block = f:read(5)
for i=1,#block do
 local onebyte = block:sub(i,i)
 local value = onebyte:byte()
 print (i, string.format("%x %d %s",value,value,onebyte))
end
 -- or
local f = io.open("a.pdf", "rb")
for i=1,25 do
 local block = f:read(1)
 print (i, string.format("%3d %02x %s",block:byte(), block:byte(), block))
end

Function f:read returns a string. Therefore, we can use all string tools for further

101

processing.
Linux users can check their results using Unix tool:

::: od -tu1 -tx1 -c x.pdf

0000000 37 80 68 70 45 49 46 55 10 37 204 213 193 212 197 216
 25 50 44 46 2d 31 2e 37 0a 25 cc d5 c1 d4 c5 d8
 % P D F - 1 . 7 \n % 314 325 301 324 305 330

102

14 Communication with OS

14.1 Library os

Most programming languages have a library of subroutines that to communicate
with the operating system.

Here we briefly introduce the os library and its tools for working with environ-
ment variables, date, time and for running external programs.

Program communication with the operating system includes input/output opera-
tions, which were discussed earlier (the io library), and processing of command line
parameters of the currently running program, which are available directly.

14.2 Reading parameters from the command line

Command line parameters (sometimes called positional parameters) are the inform-
ation we enter when we run a command to specify to a generally written program,
usually the files or directories with which the program is supposed to work with. For
example:

cp this-file.txt new-file.txt
ls *.txt

In Lua scripts we can also get these parameters and use. In general, their use is
convenient because they allow us to use one program repeatedly for different values
without having to intervene the source code of the script. This is how most of the
programs that make up basic Unix/Linux operating system.

Let’s imagine a simple program:

local a, b = arg[1], arg[2]
print (a+b)

Let the file be named mycalc. Now let’s try to run it and the values we want to
add up are given as parameters:

lua mycalc 6 8
lua mycalc 100 100
lua mycalc 5 -4

103

14.3 Environmental variables

Environment variables refer to the running command interpreter (shell). They
consist of a variable name and associated content. In OS Linux, a list of environment
variables can be listed using the printenv (abbreviated) command:

HOME=/home/tom
LANG=en_US.UTF-8
LOGNAME=tom
PWD=/home/tom/lua/textbook
SHELL=/bin/bash
USER=tom

We can see that the variable names and contents are separated by an equals sign.
Typical operations are getting the content of a particular variable and getting a

list of variables.

print (os.getenv("USER"))

local envvars = {}

for envline in io.popen("set"):lines() do
 envname = envline:match("^[^=]+")
 envvars[envname] = os.getenv(envname)
end

paths = (os.getenv("PATH")):gmatch("([%w/%-_]-):")
print(#paths)

empty buffer

14.4 Date and time

There are three functions for date and time management in Lua: date, time,
clock, which converts the date in number form to human-readable form, converts
human-readable to number form, and returns the number of seconds of CPU time for
the program, respectively.

104

print(os.date("today is %A, %B %d"))
Today is Monday, September 15

print(os.time("Now is %X"))
Now is 13:51:53

The following table shows possible values for the function date:

%a abbreviated weekday name (e.g., Wed)
%A full weekday name (e.g., Wednesday)
%b abbreviated month name (e.g., Sep)
%B full month name (e.g., September)
%c date and time (e.g., 09/16/98 23:48:10)
%d day of the month (16) [01-31]
%H hour, using a 24-hour clock (23) [00-23]
%I hour, using a 12-hour clock (11) [01-12]
%M minute (48) [00-59]
%m month (09) [01-12]
%p either "am" or "pm" (pm)
%S second (10) [00-61]
%w weekday (3) [0-6 = Sunday-Saturday]
%x date (e.g., 09/16/98)
%X time (e.g., 23:48:10)
%Y full year (1998)
%y two-digit year (98) [00-99]
%% the character `%´

14.5 Executing programms

Running external programs from a program written in Lua with the execute uni-
versal function, whose parameter is a string containing the command and all neces-
sary parameters, which we would otherwise write directly to the command line.

os.execute("mkdir new_directory")

105

15 Use of Lua in Applications

15.1 Lua in ConTEXt

ConTEXt is an extension of the basic TEX5 (similarly to LATEX).
It provides a wide range of tools needed to create documents of different types

and different complexity.
Its author is Hans Hagen and it was originally called pragmatex. The name Con-

TEXt has been used since about 1996. Development of ConTEXtruns continuously,
based on user requirements.

The examples in this chapter only gently illustrate the wide range of uses of lan-
guage Lua. Those interested in the ConTEXt typographic system can find out more
details on the ConTEXt website (contextgarden, 2022) or in the manuals posted there.

15.1.1 Small multiplication table
The first example creates a small multiplication table.

\starttext
\section{This is the small multiplication table}
\startluacode
context.bTABLE()
for i=1,20 do
 context.bTR()
 for j=1,20 do
 context.bTD()
 context(i*j)
 context.eTD()
 end
 context.eTR()
end
context.eTABLE()
\stopluacode
The end.
\stoptext

The output format of the ConTEXt system is PDF. The files are created by a com-
pilation process from the source text above. The resulting file can be viewed with
any PDF viewer.

The \starttext command was used to start processing the document. The com-

5 The program TEX has been created in 1978 and its author is Donald E. Knuth.

106

mand \section creates a title above the table. The table itself is generated by a Lua
code snippet that is bounded by a pair of commands \startluacode and \stoplu-
acode.

If you are missing the print command, do not despair. It is not needed. The
generated information will not appear on the standard output as it was in all previous
examples, but it is written to the output stream from which the required PDF will be
generated. This will resolve the context subroutinewhich extends the Lua language
in ConTEXt.

The functions bTABLE, eTABLE, bTR, eTR, bTD, eTD represent the beginnings and
ends of tables, rows, and individual cells, respectively. If this way of writing reminds
anyone of HTML, it is no coincidence.

15.1.2 Use of data structures
In ConTeXt, all information is stored in large data structures – in tables. For example,
language-dependent ones are drawn from these tables information.

The following example first displays the data in the various forms for various
languages, to the PDF output stream, and then runs the inspect subroutine, which
will display one sub-associative field related to specified month on standard output.

The following example first displays the output stream for PDF data in shapes for
different languages and then runs the inspect subroutine which na standard output
will display one sub-associative array related to specified month.

\starttext
\setupbodyfont[libertinus]

\startlines
\currentdate
\mainlanguage[cs] \currentdate
\mainlanguage[fi] \currentdate
\mainlanguage[sk] \currentdate
\mainlanguage[pl] \currentdate
\mainlanguage[ro] \currentdate
\stoplines

\startluacode
inspect(languages.data.labels.texts.june)
\stopluacode
\stoptext

table={ -- shortened
["labels"]={
["af"]="junie",
["cs"]="června",
["de"]="Juni",
["en"]="June",
["fi"]="kesäkuu",
["fr"]="juin",
["hr"]="lipnja",
["la"]="Iunius",

107

["lt"]="birželio",
["nn"]="juni",
["pl"]="czerwca",
["pt"]="junho",
["ro"]="iunie",
["sk"]="júna",

},
}

And this is the output of this example:

December 28, 2022
28. prosince 2022
2022 joulukuu 28
28. decembra 2022
28. grudnia 2022
28 decembrie 2022

108

109

References

[Ierusalimschy, Roberto] Lua 5.4 Reference Manual [on-line]. In Lua.org. [s. l.] :
PUC Rio, 2020–2022 [cit. 2022-11-30]. Dostupné na: https://www.lua.org/manual
/5.4/.

Ierusalimschy, Roberto Programming in Lua. [s. l.] : Lua.org, 2016. 388 s.
ISBN 8590379868.

Ierusalimschy, Roberto; de Figueiredo, Luiz Henrique; Celes, Waldemar The
Evolution of Lua [on-line]. [2007]. [cit. 2022-11-30]. Dostupné na: www.tecgraf
.puc-rio.br/~lhf/ftp/doc/hopl.pdf.

Lua Documentation [on-line]. In Lua.org. 2021 [cit. 2022-02-15]. Dostupné na: https:
//www.lua.org/docs.html.

Lua – Math library [on-line]. In TutorialsPoint. [s. d.] [cit. 2022-08-11]. Dostupné na:
https://www.tutorialspoint.com/lua/lua_math_library.htm.

luac – Lua compiler [on-line]. In Lua 5.3 ReferenceManual. 25Aug 2020 [cit. 2022-02-17].
Dostupné na: https://www.lua.org/manual/5.3/luac.html.

Algorithmization and Programming in Lua
Study text

Author: Tomáš Hála
Mendel University in Brno
Publisher: Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Graphic editing and typesetting: Tomáš Hála
Year of publishing: 2022
First edition
Number of pages: 110
ISBN 978-80-7509-893-1 (online ; pdf)
DOI https://doi.org/10.11118/978-80-7509-893-1

