
Mendel University in Brno

Mobile Application Development
Study material

Radosław Maciaszczyk
West Pomeranian University of Technology in Szczecin

Project: Innovative Open Source Courses
for Computer Science Curriculum

24. 6. 2022

Reviewer: Dr. Patrik Hrkút, Department of Software Technologies,
University of Žilina, Slovakia
Project: Innovative Open Source Courses for Computer Science Curriculum
© Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
ISBN 978-80-7509-890-0 (online ; pdf)
DOI: https://doi.org/10.11118/978-80-7509-890-0

Open Access. This book is licensed under the terms of the Creative Commons
Attribution-ShareAlike 4.0 International License, CC BY-SA 4.0
(https://creativecommons.org/licenses/by-sa/4.0/)

Project: Innovative Open Source Courses for Computer Science Curriculum

This material teaching was written as one of the outputs of the project “Innovative Open
Source Courses for Computer Science Curriculum”, funded by the Erasmus+ grant no.
2019-1-PL01-KA203-065564. The project is coordinated by West Pomeranian University
of Technology in Szczecin (Poland) and is implemented in partnership with Mendel Uni-
versity in Brno (Czech Republic) and University of Žilina (Slovak Republic). The project
implementation timeline is September 2019 to December 2022.

Project information
Project was implemented under the Erasmus+.
Project name: “Innovative Open Source courses for Computer Science curriculum”
Project nr: 2019-1-PL01-KA203-065564
Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action Type: KA203 – Strategic Partnerships for higher education

Consortium
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
MENDELOVA UNIVERZITA V BRNĚ
ŽILINSKÁ UNIVERZITA V ŽILINE

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication reflects the views
only of the author, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

Copyright Notice
This content was created by the IOSCS consortium: 2019–2022. The content is Copyrighted and distributed
under Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

4

Preface

The book has been prepared to acquire or extend knowledge in the field of “Mobile Appli-
cationDevelopment” in theAndroid environment. Togetherwith thematerial supporting
the labs and lectures, it provides a complete course for those starting to program in the
Android environment. The book can be used by undergraduate students, engineering
students, graduate students, new technology enthusiasts, and engineers wishing to gain
knowledge in programming in the Android environment. Teachers and lecturers can
use the entire course along with the book to teach. The course is dedicated to beginners,
hence the material included here covers the basics. The book uses official documentation,
descriptions, and guides available at https://android.com. It should be noted that the
Android platform is constantly evolving, adding or changing features or libraries. This
results in the fact that some of the material may change over time. However, the topics
selected in the book represent a certain base, and their variability is already tiny.

The first two chapters provide general information about Android and the tools for
developing applications. The third chapter contains a description of the basic components
of Android, together with an overview of their life cycle. This is followed by information
on how to create the user interface. The fifth chapter includes details on how sensors
and locations are used. Ways of storing data are included in chapter six. Chapter seven
familiarises you with the MVVM design pattern. The final chapter provides information
on how to retrieve data from the internet.

5

Contents

1 Introduction 7
1.1 History of Android . 8
1.2 Android and Open Source . 9

2 Development tools 12
2.1 Android Studio . 12
2.2 Programming language . 13

2.2.1 Kotlin . 13
2.3 Integrated Development Environment . 14

2.3.1 Testing applications in Android Studio 15

3 Application Fundamentals 17
3.1 Components . 17
3.2 Android Manifest . 18
3.3 Lifecycle . 20

3.3.1 Activity lifecycle . 20
3.3.2 Fragments . 22
3.3.3 Methods of the Android Fragment 23
3.3.4 Creating fragments . 23

3.4 Navigation Component . 25
3.4.1 Definition of NavHost in activity 28

3.5 Services . 30
3.5.1 Creation of services . 31

3.6 Broadcast Receivers . 32
3.6.1 Receiving broadcasts . 33
3.6.2 Sending broadcasts . 33

3.7 Content Provider . 34
3.7.1 Creation of content providers . 35

4 User interface 36
4.1 Create a layout . 37

4.1.1 ConstraintLayout . 38
4.2 Material Design . 41

4.2.1 Interface development tools . 42
4.2.2 Color . 45
4.2.3 System icons . 46

5 Sensors 47
5.1 Sensor Framework . 47
5.2 Location . 50
5.3 Request permissions . 52

6 Data persistence 56
6.1 App preferences . 56
6.2 Room – Database . 57

6.2.1 Entity . 58
6.2.2 DAO . 59
6.2.3 Database . 59
6.2.4 Repository – How manage Database 60

7 Design pattern MVVM 62
7.1 ViewModel . 63
7.2 LiveData . 64

7.2.1 Using LiveData . 65

8 Networking 66
8.1 HTTP connections using HttpUrlConnection 67
8.2 HTTP connections using Retrofit . 68

9 Summary 71

6

Chapter 1 7

Introduction

Technological advances, together with the development of wireless communication sys-
tems, are one of the main drivers for the development of operational mobile systems in
the consumer market. Another element contributing to the development of systems and
devices is social media and e-commerce systems. Mobile devices, in particular smart-
phones, are increasingly replacing other devices. Devices equipped with powerful and
energy-efficient processors, various types of sensors or capacious and fast-charging bat-
teries. This allows them to be used for a variety of activities. The scope of these activities
is broad, thanks to the possibility of developing applications. “Digital 2022” reports se-
ries [3] in partnership with “We Are Social” and “Hootsuite” published that 66.6% of the
world’s population uses mobile phones. The same report publishes that the average usage
time of the device is 4h 10min, with 92% of the time using various mobile applications.
This shows great potential for application development.

Figure 1.1: Mobile Users [3]

By mobile devices, we mean electronic devices that allow data processing without
a wired connection to computer networks. Another important aspect is that their small
size or battery power, which will enable users to carry this device around. Themarket for
consumer mobile devices includes smartphones, tablets or smartwatches. The operating
systems used in these devices can also be found in other devices such as televisions or
cars’ info-entertainment systems. However, these recently mentioned devices do not fall
into the category of mobile devices. This shows a certain evolution of mobile operating
systems, which have become more.

The market is currently dominated by two operating systems (Tab. 1.1), Android
and iOS. The high popularity of Android is because this system is used by many manu-

Figure 1.2: Mobile Time by Activity [3]

facturers producing devices with different prices. There are several leading vendors with
a predominance of companies from the East Asian regions (Tab. 1.2).

Tab. 1.1: Mobile Operating System Market Share Worldwide, March 2022 [1]

Mobile Operating System Market share
Android 71,7%
iOS 27,57%
Samsung 0,42%
KaiOS 0,14%
Unknown 0,1%
Windows 0,01%

Android is an open-source operating system for mobile devices and a related open-
source project led by Google [11]. Android Open Source Project (AOSP) repository offers
the information and source code needed to create custom variants of the Android OS, port
devices and accessories to the Android platform, and ensure devices meet the compati-
bility requirements that keep the Android ecosystem a healthy and stable environment
for millions of users.

As an open-source project, Android’s goal is to avoid any central point of failure in
which one industry player can restrict or control the innovations of any other player. To
that end, Android is a whole, production-quality operating system for consumer prod-
ucts, complete with customisable source code that can be ported to nearly any device and
public documentation available to everyone.

There are not many requirements to start developing applications. Generally, you
need knowledge of the object-oriented language. For Android, it is (JAVA, KOTLIN).

1.1 History of Android
The Android story began in October 2003 in Palo Alto, California. This is when four men
– Andy Rubin, Rich Miner, Nick Sears and Chris White – decide to set up an Android Inc

8

Tab. 1.2: Mobile Vendor Market Share Worldwide, March 2022 [2]

Mobile Operating System Market share
Samsung 28,22%
Apple 27,57%
Xiaomi 12,24%
Huawei 6,53%
Oppo 5,25%
Vivo 4,12%
Realme 2,99%
Motorola 2,66%
LG 1,26%
Other 9,16%

company. Initially, the aim of Android Inc. was software for digital cameras, but over
time they changed the profile of the software they were developing to a mobile operating
system. This was to compete with Nokia’s Symbian or Microsoft’s Windows Mobile. In
July 2005, Android Inc. was acquired by Google. At the time, the popularity of mobile
systems was only growing, and the purchase was one of many at the time and did not
generate much interest. In 2007, in response to Apple, Google and 34 partners formed the
Open Handset Alliance [4] to develop and popularise the new Android mobile operating
system. The alliance brought together several companies from different fields:

• Mobile Operators including NTT DoCoMo,

• Handset Manufacturers including HTC, Samsung,

• Semiconductor Companies including Qualcomm,

• Software Companies including Google, eBay,

• Commercialization Companies including Flex Comix.

Since then, the Open Handset Alliance has been working on Android development. The
first version of the Android SDK was released on 12.11.2007 [5], which includes develop-
ment tools, a debugger, libraries, an emulator, documentation, sample projects, tutorials,
FAQs and much more. However, it was not until the commercial launch (22.10.2008) of
the first phone [6] with Android that the rapid development of the system began.

In early 2022, version 12 of Android [7] is officially available, along with API version
32. Subsequent versions of Android and their corresponding APIs change the system’s
appearance and add new capabilities or improvements. The versions of the system re-
leased to date are shown in table 1.3. The latest version of Android 13 is the version
planned for deployment. This version was in development at the time of writing, and the
API was available to developers.

1.2 Android and Open Source
Android is an open-source operating system for mobile devices and a corresponding
open-source project led by Google [11]. Android Open Source Project (AOSP) repository

9

Tab. 1.3: Android versions [7]
Name Internal codename Version number(s) Initial stablerelease date

Android 1.0 N/A 1.0 September 23, 2008
Android 1.1 Petit Four 1.1 February 9, 2009
Android Cupcake Cupcake 1.5 April 27, 2009
Android Donut Donut 1.6 September 15, 2009

Android Eclair Eclair
2.0 October 27, 2009
2.0.1 December 3, 2009
2.1 January 11, 2010

Android Froyo Froyo 2.2 – 2.2.3 May 20, 2010

Android Gingerbread Gingerbread 2.3 – 2.3.2 December 6, 2010
2.3.3 – 2.3.7 February 9, 2011

Android Honeycomb Honeycomb
3.0 February 22, 2011
3.1 May 10, 2011
3.2 – 3.2.6 July 15, 2011

Android Ice Cream Sandwich Ice Cream Sandwich 4.0 – 4.0.2 October 18, 2011
4.0.3 – 4.0.4 December 16, 2011

Android Jelly Bean Jelly Bean
4.1 – 4.1.2 July 9, 2012
4.2 – 4.2.2 November 13, 2012
4.3 – 4.3.1 July 24, 2013

Android KitKat Key Lime Pie 4.4 – 4.4.4 October 31, 2013
4.4W – 4.4W.2 June 25, 2014

Android Lollipop Lemon Meringue Pie 5.0 – 5.0.2 November 4, 2014
5.1 – 5.1.1 March 2, 2015

Android Marshmallow Macadamia Nut Cookie 6.0 – 6.0.1 October 2, 2015

Android Nougat New York Cheesecake 7.0 August 22, 2016
7.1 – 7.1.2 October 4, 2016

Android Oreo Oatmeal Cookie 8.0 August 21, 2017
8.1 December 5, 2017

Android Pie Pistachio Ice Cream 9 August 6, 2018
Android 10 Quince Tart 10 September 3, 2019
Android 11 Red Velvet Cake 11 September 8, 2020
Android 12 Snow Cone 12 October 4, 2021
Android 12L Snow Cone v2 12.1 March 7, 2022
Android 13 Tiramisu 13 Q3 2022

offers the information and source code needed to create custom variants of the Android
OS, port devices and accessories to the Android platform, and ensure devices meet the
compatibility requirements that keep the Android ecosystem a healthy and stable envi-
ronment for millions of users.

As an open-source project, Android’s goal is to avoid any central point of failure in
which one industry player can restrict or control the innovations of any other player. To
that end, Android is a full, production-quality operating system for consumer products,
complete with customisable source code that can be ported to nearly any device and
public documentation available to everyone.

At webpage https:\\cs.android.com, source codes for Android, the AndroidX
Library or the Android Studio development environment are available.

10

Figure 1.3: Android Code Search [12]

11

12 Chapter 2

Development tools

Effective software development requires usage tools for developing and testing applica-
tions. It is also essential to choose the right language and library or framework. The
course described in this book focuses on the basics; hence the choice of libraries does not
go beyond the official proposals.

2.1 Android Studio
The freeware Android Studio is used for programming. The development environment is
available for multiple platforms, including Windows, Mac, Linux, and Chrome OS [13].

Android Studio is the official Integrated Development Environment (IDE) for An-
droid app development, based on IntelliJ IDEA. On top of IntelliJ’s powerful code editor
and developer tools, Android Studio offers even more features that enhance your pro-
ductivity when building Android apps, such as [14]:

• A flexible Gradle-based build system

• A fast and feature-rich emulator

• A unified environment where you can develop for all Android devices

• Apply Changes to push code and resource changes to your running app without
restarting your app

• Code templates and GitHub integration to help you build common app features
and import sample code

• Extensive testing tools and frameworks

• Lint tools to catch performance, usability, version compatibility, and other prob-
lems

• C++ and NDK support

• Built-in support for Google Cloud Platform, making it easy to integrate Google
Cloud Messaging and App Engine

Android Studio is released under the open-source Apache License 2.0. However, it also
includes some proprietary code Figure no. 2.1.

Figure 2.1: Android Studio licence

2.2 Programming language
The primary language currently used for Android app development is Kotlin, which has
replaced the JAVA language. Kotlin is a relatively new language, having only reached
1.0 status in 2016. At the 2019 Google I|O conference, Google announced that the An-
droid SDK would be developed as “Kotlin first” in the future. Although programming in
Java is still possible, Google will focus on Kotlin, particularly regarding documentation,
tutorials, or educational material.

Kotlin adopts newer approaches, and the resulting language can be much more con-
cise so that more work can be done with fewer lines of code. At the same time, while
helping to minimise errors in the code.

2.2.1 Kotlin

Kotlin is a cross-platform, statically typed general-purpose programming language.
Kotlin is designed to be fully interoperable with Java, and the Kotlin standard library
for the JVM depends on the Java class library.

Kotlin is a modern language that is easier to use and more readable than Java. The
ease and simplicity of the language make it more reliable for applications. Features of
Kotlin that make it considered easier:

• Optional semicolons,

• Create objects without new,

• Skip variable type,

• Optional void in functions,

• Classes can be much shorter than in JAVA,

• Static typing,

• Checking null, need to explicitly specify the object as nullable,

13

• Handling of named and optional arguments,

• Lambda functions,

• Kotlin does not have checked exceptions.

The language developers at https://kotlinlang.org/#why-kotlin provide
several examples demonstrating the advantages of the language. Two of them will be
quoted here [9]:

• Concise:

1 da t a c l a s s Employee (
2 v a l name : S t r i n g ,
3 v a l ema i l : S t r i n g ,
4 v a l company : S t r i n g
5) / / + a u t oma t i c a l l y g ene r a t ed e qua l s () , hashCode () , t o S t r i n g () , and copy ()
6
7 o b j e c t MyCompany { / / A s i n g l e t o n
8 con s t v a l name : S t r i n g = ”MyCompany”
9 }

10
11 fun main () {
12 v a l employee = Employee (” A l i c e ” , / / No ‘new ‘ keyword
13 ” alice@mycompany . com” , MyCompany . name)
14 p r i n t l n (employee)
15 }

• Safe:
1 fun r e p l y (c o n d i t i o n : Boolean) : S t r i n g ? = / / N u l l a b i l i t y i s p a r t o f ’ K o t l i n s type system
2 i f (c o n d i t i o n) ” I ’m f i n e ” e l s e n u l l
3
4 fun e r r o r () : Nothing = / / Always throw an ex c ep t i on
5 throw I l l e g a l S t a t e E x c e p t i o n (” Shouldn ’ t be here ”)
6
7 fun main () {
8 v a l c o n d i t i o n = t r u e / / Try r e p l a c i n g ‘ t rue ‘ with ‘ f a l s e ‘ and run the sample !
9 v a l message = r e p l y (c o n d i t i o n) / / The r e s u l t i s n u l l a b l e

10 / / p r i n t l n (message . uppe r ca se ()) / / Th i s l i n e doesn ’ t compi l e
11 p r i n t l n (message ? . r e p l a c e (” f i n e ” , ” okay ”)) / / Access a n u l l a b l e va l u e in a s a f e manner
12 i f (message != n u l l) { / / I f you check t h a t the type i s r i g h t ,
13 p r i n t l n (message . uppe r ca se ()) / / the comp i l e r w i l l smart − c a s t i t f o r you
14 }
15
16 v a l nonNul l : S t r i n g = / / I f the nu l l − c a s e throws an e r ro r ,
17 r e p l y (c o n d i t i o n = t r u e) ? : e r r o r () / / K o t l i n can i n f e r t h a t the r e s u l t i s non− nu l l
18 p r i n t l n (nonNul l)
19 }

• Expressive

• Interoperable

• Multiplatform

More information about the Kotlin language can be found in the documentation [8],
and it is worth reading the book [10].

2.3 Integrated Development Environment
The Android Studio environment provides many tools which let us create applications
faster. Among the many Android Studio tools, we can distinguish:

• Intelligent code editor

14

• Visual layout editor

• Device Emulator

• Instant App Run

• Testing tools and frameworks

• Wireless debugging

• App Inspection – Database Inspector, Network Inspector, Backgroud Task Inspec-
tor

• Code Analyze

2.3.1 Testing applications in Android Studio

The Android Studio environment and the tools built into the SDK provide many tools to
support application testing. The most important is the ability to run/debug applications
on real devices and emulators. You launch and control the application directly from the
environment.

If you want to install the application on a physical device directly from Android
Studio, you must first enable the developer options on the device, which are hidden.
This is unlocked by tapping seven times on the “Build Number”, which can be found in
“Settings→ About Phone→ Build Number”. In the next step, using the USB cable, we
can already install, run and debug the application. In recent releases of Android Studio,
the possibility to run the application using a WiFi wireless connection has been added.

Another possibility to test the created application is to use the Android emulator.
An image of this system is distributed together with the SDK. In addition to running
and debugging, the tool allows for to change of sensor values, emulating positioning,
emulating camera images and changing network parameters. This enables testing of
most device use cases. More information about the emulator can be found at https:
//developer.android.com/studio/run/emulator.

In addition to running, it is possible to use a window for reading logs called Log-
cat. It displays messages in real-time and keeps a history so that older messages can
be viewed. We can filter messages according to various criteria. If an exception has
not been handled in the application, the Logcat window displays the error information
https://developer.android.com/studio/debug/am-logcat.

Android Studio has built-in tools that are used to build and validate the correctness
of the built layout. These are: Layout Inspector and Layout Validation. The first tool is
used to validate the user interface, allowing the entire hierarchy to be displayed, which
makes it easier to work with complex layouts. Layout Inspector is available via “Tools
→ Layout Inspector” for devices with APIs above 29, it is possible to run a Live Layout
Inspector mode, which allows the user interface to be viewed while working on an em-
ulator or physical device. The Layout Validation tool allows the layout to be reviewed
simultaneously on different devices and with different screen settings(e.g. font size, de-
vice language).

Tools are also built into the environment to streamline the creation of automated
application tests. On page https://developer.android.com/training/testing,

15

good practices related to application testing are included. The available tools are also
presented.

The tools mentioned above are the basic ones used in application development. It is
worth reading a complete description of application testing tools https://developer.
android.com/studio/debug.

16

Chapter 3 17

Application Fundamentals

The Android app is distributed via a single apk file. The ordinary user installs the appli-
cation via the Google Play market. It is also possible to use alternative shops, including
manufacturers’ shops (e.g. Samsung Galaxy Store). The Android Studio environment al-
lows applications to run on both a virtual device (emulator) and a physical device. Once
an app is installed, the system launches it, with each Android app running in a security
sandbox. This helps to protect the app and the user. The following rules apply:

• Security is based on the permission rules as they are in Linux,

• Each application is a different user,

• Each process is a separate virtual machine,

• An application is running when one of its components needs to be run.

• Access to some system resources (e.g. location) requires permission from the user

Developing applications in a mobile system requires knowledge of the available
components, permissions or system limitations. As the system has developed, the rec-
ommendations for developing applications or the capabilities of the available libraries
have changed, and restrictions have emerged to protect the user’s privacy or conserve
the device’s energy.

3.1 Components
When creating a programme, we use four basic types of components:

• Activities

• Services

• Broadcast receivers

• Content providers

Activity – It is a key application component. AnActivity represents a singlewindow
of the application. It allows interaction with the user. There can be multiple Activities in
each application, each with its life cycle.

Service – Is a component that allows background operations, e.g. performing long-
running computational operations or waiting for calls from others (external or internal
services). Services do not provide a user interface. It is possible to associate an activity
with a service and perform an interaction.

Broadcast receivers – The component allows the system to deliver messages be-
tween application components and different applications or the system. System mes-
sages such as “Battery low” are particularly useful. The component does not have a user
interface but can send notifications so the user can take action.

Content providers – A mechanism that allows sharing data with other applications
using a uniform interface in the form of URI addresses. Also, the system provides its
data using the Content providers mechanism so that we can use a database of photos or
a database of phone numbers.

Each component has its life cycle, and these will be presented later.
Launching components (except for Content providers) is possible through intents

(Intent class). Intents facilitate communication between components in several ways,
and there are three basic use cases:

• Starting an activity

• Starting a service

• Delivering a broadcast

Intents can be defined as explicit or implicit. Explicit, i.e. the full class name of the
component is defined, or Implicit, i.e. the name of the component is not specified, but the
action to be performed is declared. An action specifies an activity that can be performed,
e.g. display, edit or send.

1 / / Bu i l d the i n t e n t .
2 v a l l o c a t i o n = Ur i . p a r s e (” geo : 0 , 0 ? q=1600+ Amphi theat re+Parkway , + Mountain+View ,+ C a l i f o r n i a ”)
3 v a l mapIntent = I n t e n t (I n t e n t . ACTION_VIEW , l o c a t i o n)
4
5 / / Try to invoke the i n t e n t .
6 t r y {
7 s t a r t A c t i v i t y (mapIntent)
8 } c a t ch (e : Ac t i v i t yNo tFoundExcep t i on) {
9 / / De f ine what your app shou ld do i f no a c t i v i t y can hand le the i n t e n t .

10 }

Listing 3.1: Example of implicit intent – View a map

We can create any number of components and use them repeatedly depending on
the application’s needs. Still, it is necessary to declare them in the application manifest,
i.e. the file AndroidManifest.xml.

3.2 Android Manifest
The manifest file is a mandatory file that must be included in the project. Its name is
“AndroidManifest.xml”, located in the application’s root directory. The file defines the
relevant information about the application for the Android build tools, the Android op-
erating system and the Google Play shop. In particular, we need to include information
about the application name, components, hardware requirements, and permissions.

18

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 <man i f e s t . . . >
3 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on ” / >
4 <uses − f u t u r e andro id :name= ” andro id . hardware ” / >
5
6 < a p p l i c a t i o n a n d r o i d : i c o n = ”@drawable / app_ icon . png ” . . . >
7 < a c t i v i t y andro id :name= ”com . example . p r o j e c t . Examp l eAc t i v i t y ”
8 a n d r o i d : l a b e l = ” @str ing / e x amp l e _ l a b e l ” . . . >
9 < / a c t i v i t y >

10 < s e r v i c e >
11 < / s e r v i c e >
12 < r e c e i v e r >
13 < / r e c e i v e r >
14 < p r o v i d e r >
15 < / p r o v i d e r >
16 . . .
17 < / a p p l i c a t i o n >
18 < / man i f e s t >

Listing 3.2: Skeleton of the AndroidManifest.xml file

In particular, it must contain information about all activities, services, broadcast re-
ceivers, and content providers. A component must have at least a class name defined,
but we can also add an intent filter or hardware requirements. The skeleton of the man-
ifest is shown in the listing 3.2. It contains only basic properties, detailed documen-
tation is available at https://developer.android.com/guide/topics/manifest/
manifest-intro [17].

1
2 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
3 <man i f e s t
4 xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
5 and r o i d : v e r s i onCode = ” 1 ”
6 andro id : ve r s i onName=” 1 . 0 ” >
7
8 < ! −− Beware t h a t t h e s e v a l u e s a r e ov e r r i d d en by the b u i l d . g r a d l e f i l e −−>
9 <uses − sdk and ro i d :m inSdkVe r s i on = ” 15 ” a n d r o i d : t a r g e t S d kV e r s i o n = ” 26 ” / >

10 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_COARSE_LOCATION” / >
11 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_FINE_LOCATION” / >
12 <uses − f e a t u r e andro id :name= ” andro id . hardware . s en so r . compass ”
13 a n d r o i d : r e q u i r e d = ” t r u e ” / >
14 < a p p l i c a t i o n
15 and ro i d : a l l owBackup = ” t r u e ”
16 a n d r o i d : i c o n = ”@mipmap / i c _ l a u n c h e r ”
17 and r o i d : r ound I c on = ”@mipmap / i c _ l aunche r _ r ound ”
18 a n d r o i d : l a b e l = ” @str ing / app_name ”
19 a n d r o i d : s u p p o r t s R t l = ” t r u e ”
20 and ro i d : t h eme= ” @style / AppTheme ”>
21
22 < ! −− This name i s r e s o l v e d to com . example . myapp . Ma inAc t i v i t y
23 based upon the namespace p rope r t y in the ‘ b u i l d . g r ad l e ‘ f i l e −−>
24 < a c t i v i t y andro id :name= ” . Ma inAc t i v i t y ” >
25 < i n t e n t − f i l t e r >
26 < a c t i o n andro id :name= ” andro id . i n t e n t . a c t i o n .MAIN” / >
27 < c a t e go ry andro id :name= ” andro id . i n t e n t . c a t e go ry . LAUNCHER” / >
28 < / i n t e n t − f i l t e r >
29 < / a c t i v i t y >
30
31 < a c t i v i t y
32 andro id :name= ” . D i s p l a y P o s i t i o nA c t i v i t y ”
33 and r o i d : p a r en tAc t i v i t yName =” . Ma inAc t i v i t y ” / >
34 < / a p p l i c a t i o n >
35 < / man i f e s t >

Listing 3.3: Manifest file of the sample application

From the manifest file of the example Listing no. 3.3, it can be read that the appli-
cation consists of two activities (MainActivity and DisplayMessageActivity), using an
intent filter, it was specified that the MainActivity activity would be started as soon as
the application starts. Permission to use the exact position is required for the application
to run, and the device must have a compass sensor.

19

3.3 Lifecycle
The LifeCycle is a class/interface that stores information about the state of components,
including Activity/Fragment and allows other objects to observe this state by tracking it.
The LifeCycle component deals with the lifecycle events of an Android component, such
as Activity or Fragment, and contains three main classes:

• Lifecycle

• Lifecycle Owner

• Lifecycle Observer

3.3.1 Activity lifecycle

Activities are key components in an application and are responsible for interacting with
the user. Knowing the lifecycle of this component is crucial to building the application
correctly. Each activity receives a window in which it draws its user interface. The
window usually fills the whole screen; sometimes, it can be smaller. An application may
consist of multiple activities that are loosely connected. Activity in its life cycle can take
on different states:

• Initialized – Activity instance is created, and its properties are initialised.

• Created – Activity is now completely initialised and ready to configure its UI.

• Started – Activity is visible to the user.

• Resumed – Activity is visible to the user and has focus. In this state, the user is
likely interacting with the activity.

• Destroyed – Activity is destroyed, and the OS can reclaim its memory.

1 c l a s s Ma inAc t i v i t y : AppCompatAct iv i ty () {
2
3 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
4 super . onCrea te (s a v e d I n s t a n c e S t a t e) ;
5 se tConten tV iew (R . l a y ou t . a c t i v i t y _ma i n) ;
6 }
7
8 o v e r r i d e fun on S t a r t () {
9 super . o n S t a r t () ;

10 }
11
12 o v e r r i d e fun onRe s t a r t () {
13 super . o nR e s t a r t () ;
14 }
15
16 o v e r r i d e fun onPause () {
17 super . onPause () ;
18 }
19
20 o v e r r i d e fun onResume () {
21 super . onResume () ;
22 }
23
24 o v e r r i d e fun onStop () {
25 super . onStop () ;
26 }
27
28 o v e r r i d e fun onDestroy () {
29 super . onDestroy () ;
30 }
31 }

Listing 3.4: Activity lifecycle calback

20

Figure 3.1: Activity Lifeycle [16]

Figure 3.1 shows all the methods from the activity lifecycle. Below is a description
of the individual callbacks methods:

• onCreate() – The activity enters state Initialized. This is where logic is performed
that should only occur once during the activity’s lifecycle. This may include setting
the content view, binding the activity to a ViewModel, initialising some class scope
variables, etc.

• onStart() – The activity enters state Started. This call makes the activity visible to
the user as the application prepares for the activity to come to the foreground and
become interactive.

• onResume() – The activity enters state Resumed. The user can now interact with
the activity. This is where you can enable all the functions that must be activated
when the component is visible and in the foreground.

21

• onPause() –The activity transitions to state Paused. This call indicates that the ac-
tivity is no longer in the foreground, although it may still be visible if the user uses
multi-window mode, for example. During this time, operations that should not be
continued or should be continued in moderation should be paused or adjusted. The
activity remains in this state until it resumes operations – for example, opening or
closing the bottom activity sheet – or until it becomes completely invisible to the
user – for example when opening another activity.

• onStop() – The activity enters state Stopped. The activity is no longer visible to
the user. At this point, you should release or adjust resources that are not needed
when the activity is not visible to the user. You should also use this opportunity to
perform shutdown operations on relatively CPU-intensive tasks, such as database
operations.

• onDestroy() –The activity transitions to stateDestroyed. At this point, the activity
stops. This may be because the user has closed the activity or a method finish() has
been called. function finish() is called on the activity.

3.3.2 Fragments

Activities are quite heavy on the system, making managing data and multiple lifecycles
cumbersome. As the system developed, the ability to create fragments was added. They
were initially provided to make developing applications for different screen sizes easier.
This mainly applied to tablets, where the look of an app could be assembled from several
fragments. Nowadays, Google’s recommended practice is creating an activity, making
changes to functionality, and including the user interface using fragments. Fragments
have their lifecycle, are always nested within an activity, and their lifecycle is linked to
the hosting activity.

Currently, fragment support is implemented as part of package JetPack – AndroidX
Fragments.

Each fragment instance has its life cycle linked to the activity that started it. When
the activity is destroyed, so are all the fragments, when the activity is suspended, so are
the fragments. The user interacts with the application while working with it with in-
dividual fragments that change states in their life cycle. LifecycleObserver allows the
programmer to detect when a fragment is active. This allows specific actions to be per-
formed. For example, the application can display a message Snackbar or Toast. Similar
to the activity, the fragment interface can be built using XML. Fragments can be in the
following states:

• INITIALIZED

• CREATED

• STARTED

• RESUMED

• DESTROYED

22

3.3.3 Methods of the Android Fragment

Callback methods are used to manage the life cycle of a fragment. These functions in-
clude well-known activity methods such as onCreate, onStart, onResume, onPause, onStop,
onDestroy. A few new ones also arrive.

• onAttach() – is called when a fragment is attached to an activity.

• onCreate() – is called to perform the initialisation of a fragment.

• onCreateView() is called by Android when the fragment should output a view.

• onViewCreated() – is called after onCreateView() – called when the fragment’s
root view is created. Any view configuration should take place here.

• onActivityCreated() – is called when the host activity has completed the onCre-
ate() method.

• onStart() – is called when the fragment is ready to be displayed on the screen.

• onResume() – in this method, we trigger the action of any listeners, e.g. reading
locations, sensors, etc.

• onPause() – in this method, we release the resources started in onResume(). We
save any data.

• onDestroyView() – is called when the fragment view is destroyed.

• onDestroy() – is called when the fragment is no longer in use.

• onDetach() – is called when a fragment is no longer connected to an activity.

Fragments are closely linked to View, which is shown in figure no. 3.2.

3.3.4 Creating fragments

The first step is to add the relevant libraries to the build.gradle file 3.5.

1 dependenc i e s {
2 / / K o t l i n
3 imp l emen ta t i on (” andro idx . f r agmen t : f r agmen t − k t x : f r a gmen t _ v e r s i o n ”)
4 }

Listing 3.5: Defining dependencies

Then create a class that inherits from the Fragment class from the AndroidX package
3.6. Specialised base classes, such as DialogFragment or PreferenceFragmentCompat,
have also been created, allowing for faster dialogue creation or window for application
settings.

23

Figure 3.2: Fragment Lifeycle [18]

1 . . .
2 impor t andro idx . f ragment . app . Fragment
3 . . .
4 c l a s s ExampleFragment : Fragment () {
5
6 o v e r r i d e fun onCreateView (i n f l a t e r : L a y o u t I n f l a t e r , c o n t a i n e r : ViewGroup ? ,
7 s a v e d I n s t a n c e S t a t e : Bundle ?) : View? {
8 v a l b i nd ing = Da t aB i nd i n gU t i l . i n f l a t e <FragmentExampleBinding >(i n f l a t e r ,
9 R . l a y ou t . example_fragment , c on t a i n e r , f a l s e)

10 r e t u r n b ind ing . r o o t
11 }
12 }

Listing 3.6: Example Fragment

Inside the class, the lifecycle callback methods should be used, including onCreate-
View(), where we can assign the fragment’s layout and then bind UI objects and perform
operations on them, as shown in the example code.

The next step is to add the fragment to the activity. To do this, FragmentContain-
erView (Listing 3.7) can be added to the activity’s layout file, which defines where the
fragment should be placed in the activity’s view hierarchy, android:name indicates the
class responsible for the fragment.

24

Another way is to define only the placeholder without specifying the class name
(Listing 3.7) and then programmatically define which fragment will be displayed (Listing
3.8). Wemake the changes using instances of the class FragmentManager. This approach
allows us to change the UI (fragment) during user interaction.

1 < ! −− r e s / l a y ou t / e x amp l e _ a c t i v i t y . xml −−>
2 <andro idx . f ragment . app . FragmentConta inerView
3 xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
4 a n d r o i d : i d = ”@+ id / f r agmen t_ con t a i n e r _v i ew ”
5 and r o i d : l a y ou t _w i d t h = ” match_parent ”
6 a n d r o i d : l a y o u t _ h e i g h t = ” match_parent ” / >

Listing 3.7: Define place for fragment (any)

1 c l a s s Examp l eAc t i v i t y : AppCompatAct iv i ty (R . l a y ou t . e x amp l e _ a c t i v i t y) {
2 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
3 super . onCrea te (s a v e d I n s t a n c e S t a t e)
4 i f (s a v e d I n s t a n c e S t a t e == n u l l) {
5 fragmentManager . commit {
6 s e tReo rde r i ngA l l owed (t r u e)
7 add <ExampleFragment >(R . i d . f r a gmen t_ con t a i n e r _v i ew)
8 }
9 }

10 }
11 }

Listing 3.8: Add a fragment programmatically

Managing fragments and their lifecycles requires much work. Android Jetpack in-
troduced Navigation Component, which simplifies interaction in the application and
allows changes to fragments to be managed.

3.4 Navigation Component
The Navigation Component is a set of libraries and tools to simplify the implementation
of navigation. It consists of three parts:

• Navigation Graph – an XML file containing all the navigation information in the
application. All the paths or steps the user can take in the application are defined.

• Nav Host – an empty container in which destinations are swapped as the user
moves through the application.

• NavController – the object that manages the application’s navigation within
NavHost.

The Navigation component provides the following:

• Fragment support,

• Default support for “Up” and “Back” actions,

• Allows the use of standard animations and transitions between actions.

• Implementation of navigation patterns (such as navigation drawers or bottom nav-
igation),

25

• Support for Gradle’s plugin, Safe Args, which improves the passing of data between
fragments,

• Support for ViewModel – a ViewModel can be attached to a navigation graph to
share UI-related data between graph destinations.

These advantages, taken together with the tools provided by Android Studio (Navigation
Editor [19]), mean that this component simplifies managed fragments in the application.
Using this component boils down to the following steps:

1. Set up your environment

2. Create a navigation graph

3. Definition of NavHost in Activity

4. Assignment of actions

Set up your environment Adding dependencies to the project (build.gradle file) Listing
no. 3.9

1 dependenc i e s {
2 imp l emen ta t i on (” andro idx . n a v i g a t i o n : n a v i g a t i o n − f ragment − k t x : n a v _ v e r s i o n ”)
3 imp l emen ta t i on (” andro idx . n a v i g a t i o n : n a v i g a t i o n −ui − k t x : n a v _ v e r s i o n ”)
4
5 / / F e a t u r e module Suppor t
6 imp l emen ta t i on (” andro idx . n a v i g a t i o n : n a v i g a t i o n −dynamic − f e a t u r e s − f r a gmen t : n a v _v e r s i on ”)
7 }

Listing 3.9: Adding dependencies

Create a navigation grap Navigation graphs are XML files that encapsulate the defi-
nition of potential user paths that may arise during interaction with the application. A
tool is provided in Android Studio that visually supports the creation of navigation de-
scriptions. Figure 3.3 shows an example of navigation. Four different actions have been
defined for three different fragments. The corresponding XML code for this graph is in
Listing 3.10.

26

Figure 3.3: Navigation graph – tools view

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 < n a v i g a t i o n xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
3 xmlns :app= ” h t t p : / / schemas . and ro id . com / apk / res − auto ”
4 xm l n s : t o o l s = ” h t t p : / / schemas . and ro id . com / t o o l s ”
5 a n d r o i d : i d = ”@+ id / mob i l e _n av i g a t i o n ”
6 a p p : s t a r t D e s t i n a t i o n = ”@+ id / nav_home ”>
7
8 < f ragment
9 a n d r o i d : i d = ”@+ id / nav_home ”

10 andro id :name= ” edu . zu t . e r a smus_p lus . e x amp l enav i g a t i on . u i . home . HomeFragment ”
11 a n d r o i d : l a b e l = ” @str ing /menu_home ”
12 t o o l s : l a y o u t = ” @layout / fragment_home ” >
13 < a c t i o n
14 a n d r o i d : i d = ”@+ id / a c t i on_nav_home_ to_nav_ga l l e r y ”
15 a p p : d e s t i n a t i o n = ”@id / n a v _ g a l l e r y ” / >
16 < a c t i o n
17 a n d r o i d : i d = ”@+ id / ac t i on_nav_home_ to_nav_s l i de show ”
18 a p p : d e s t i n a t i o n = ”@id / nav_s l i de show ” / >
19 < / f ragment >
20
21 < f ragment
22 a n d r o i d : i d = ”@+ id / n a v _ g a l l e r y ”
23 andro id :name= ” edu . zu t . e r a smus_p lus . e x amp l enav i g a t i on . u i . g a l l e r y . Ga l l e ryF ragmen t ”
24 a n d r o i d : l a b e l = ” @str ing / menu_ga l l e ry ”
25 t o o l s : l a y o u t = ” @layout / f r a gmen t _ g a l l e r y ” >
26 < a c t i o n
27 a n d r o i d : i d = ”@+ id / a c t i on_nav_ga l l e ry_ to_nav_home ”
28 a p p : d e s t i n a t i o n = ”@id / nav_home ” / >
29 < / f ragment >
30
31 < f ragment
32 a n d r o i d : i d = ”@+ id / nav_s l i de show ”
33 andro id :name= ” edu . zu t . e r a smus_p lus . e x amp l enav i g a t i on . u i . s l i d e show . S l ideshowFragment ”
34 a n d r o i d : l a b e l = ” @str ing / menu_sl ideshow ”
35 t o o l s : l a y o u t = ” @layout / f r agmen t_ s l i d e show ” >
36 < a c t i o n
37 a n d r o i d : i d = ”@+ id / ac t i on_nav_s l i de show_to_nav_home ”
38 a p p : d e s t i n a t i o n = ”@id / nav_home ” / >
39 < / f ragment >
40 < / n a v i g a t i o n >

Listing 3.10: Navigation graph – XML

27

We define the initial interface using the app:startDestination property (line no. 6).
Then, we define the individual fragments and the actions that can be performed. In our
case, two actions are defined for fragment
edu.zut.erasmus_plus.examplenavigation.ui.home.HomeFragment. In the code, these ac-
tions are assigned to the corresponding buttons.

3.4.1 Definition of NavHost in activity

Navigation host is an empty container responsible for displaying individual fragments.
It can cover the whole screen or be a specific part.

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 <andro idx . c o n s t r a i n t l a y o u t . widget . Con s t r a i n t L ayou t xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
3 xmlns :app= ” h t t p : / / schemas . and ro id . com / apk / res − auto ”
4 xm l n s : t o o l s = ” h t t p : / / schemas . and ro id . com / t o o l s ”
5 a n d r o i d : l a y ou t _w i d t h = ” match_parent ”
6 a n d r o i d : l a y o u t _ h e i g h t = ” match_parent ”
7 a p p : l a y ou t _ b e h a v i o r = ” @str ing / a p p b a r _ s c r o l l i n g _ v i ew_b eh a v i o r ”
8 t o o l s : s h ow I n = ” @layout / app_bar_main ”>
9

10 <andro idx . f ragment . app . FragmentConta inerView
11 a n d r o i d : i d = ”@+ id / nav_hos t_ f r agment_con ten t_ma in ”
12 andro id :name= ” andro idx . n a v i g a t i o n . f ragment . NavHostFragment ”
13 a nd r o i d : l a y ou t _w i d t h = ” match_parent ”
14 a n d r o i d : l a y o u t _ h e i g h t = ” match_parent ”
15 app : d e f au l tNavHos t = ” t r u e ”
16 a p p : l a y o u t _ c o n s t r a i n t L e f t _ t o L e f t O f = ” pa r en t ”
17 a p p : l a y o u t _ c o n s t r a i n t R i g h t _ t o R i g h tO f = ” pa r en t ”
18 app : l a you t _ c on s t r a i n tTop_ t oTopO f = ” pa r en t ”
19 app:navGraph= ” @navigat ion / mob i l e _n av i g a t i o n ” / >
20 < / andro idx . c o n s t r a i n t l a y o u t . widge t . Con s t r a i n t L ayou t >

Listing 3.11: Navigation navhost

It is worth noting in the example Listing no. 3.11:

• android:name – attribute contains the class name of your NavHost implementa-
tion,

• app:navGraph – attribute associates the NavHostFragment with a navigation
graph,

• app:defaultNavHost=”true” attribute ensures that your NavHostFragment inter-
cepts the system Back button. Note that only one NavHost can be the default.

Assignment of actions Actions in the program are often assigned to buttons by adding
an event handler onClick.

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 o v e r r i d e fun onC l i ck (v i ew : View) {
3 view . f i n dNavCon t r o l l e r () . n a v i g a t e (@+ i d / a c t i on_nav_home_ to_nav_ga l l e r y)
4 }

Listing 3.12: Calling a navigation action from method onClick().

The above example, Listing no. 3.12 proceeds to the given fragment without passing
arguments. Argument passing is possible by using Safe Args Gradle plugin.

Before the introduction of Safe Args, passing data when passing to another screen
required using an object Bundle. The first Activity, the sender, created an instance Bundle
and filled it with data. The second Activity, the receiver, retrieved this data later. This
manual approach to sending and unpacking data is unreliable because the sender and
receiver must agree on the following:

28

• Keys,

• Default values for each key,

• The type of data corresponds to the keys.

Nor can force the recipient or the sender to provide all the required data. Furthermore,
when unpacking data, type security is not guaranteed on the recipient’s side.

Android has introduced Safe Args to address these issues. Safe Args is a plug-in to
Gradle that generates code to add data to the Bundle packet and access it in a simple and
type-safe manner.

Using Safe args requires changes to the build.gradle files. To do this, we need to add
Listing plugin no. 3.13 in build.gradle.

1 < ! −− top − l e v e l b u i l d . g r a d l e −−>
2 dependenc i e s {
3 . . .
4 c l a s s p a t h ” andro idx . n a v i g a t i o n : n a v i g a t i o n − s a f e − args − g rad l e − p l u g i n : n a v i g a t i o n _ v e r s i o n ”
5 }
6
7 < ! −− app− l e v e l b u i l d . g r a d l e −−>
8 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
9 p l u g i n s {

10 i d (” andro idx . n a v i g a t i o n . s a f e a r g s ”)
11 \ \ or when gene r a t e Ko t l i n code s u i t a b l e f o r Ko t l i n −only modules
12 i d (” andro idx . n a v i g a t i o n . s a f e a r g s . k o t l i n ”)
13
14 app ly p l u g i n : ” andro idx . n a v i g a t i o n . s a f e a r g s ”
15 }

Listing 3.13: Set up Safe Args

When Safe Args is enabled, this plugin generates code containing classes and methods
for each defined action. For each action, Safe Args also generates a class for each des-
tination, i.e. the destination from which the action originates. The use of arguments
requires that argument information is added in the navigation graph Listing no. 3.14. In
this example, we expect information about the value of argument startImage in fragment
GalleryFragment.

1
2 < ! −− r e s / n a v i g a t i o n / mob i l e _n av i g a t i o n . xml −−>
3 . . .
4 < f ragment
5 a n d r o i d : i d = ”@+ id / n a v _ g a l l e r y ”
6 andro id :name= ” edu . zu t . e r a smus_p lus . e x amp l enav i g a t i on . u i . g a l l e r y . Ga l l e ryF ragmen t ”
7 a n d r o i d : l a b e l = ” @str ing / menu_ga l l e ry ”
8 t o o l s : l a y o u t = ” @layout / f r a gmen t _ g a l l e r y ” >
9 <argument

10 andro id :name= ” s t a r t Imag e ”
11 app :a rgType= ” i n t e g e r ”
12 a n d r o i d : d e f a u l t V a l u e = ” 1 ” / >
13 < a c t i o n
14 a n d r o i d : i d = ”@+ id / a c t i on_nav_ga l l e ry_ to_nav_home ”
15 a p p : d e s t i n a t i o n = ”@id / nav_home ” / >
16 < / f ragment >
17 . . .

Listing 3.14: Navigation Arguments

The action involved in passing the argument is shown in Listing no. 3.15.
1 o v e r r i d e fun onC l i ck (view : View) {
2 v a l ac t ionWi thArgs = HomeFragmentDirec t ions . act ionNavHomeToNavGal lery () . s e t S t a r t Im a g e (2)
3
4 view . f i n dNavCon t r o l l e r () . n a v i g a t e (ac t i onWi thArgs)
5 }

Listing 3.15: Navigation action arguments

29

It is worth noting in the example Listing no. 3.15:

• HomeFragmentDirections - Safe Args automatically generates a class with a name
corresponding to the fragment class name and the word Directions,

• actionNavHomeToNavGallery – Safe Args automatically generates an action ob-
ject with a name without underscore characters,

• setStartImage – Safe Args automatically generates a method to set an argument
value.

Amechanism created this way is simple to implement and avoids errors by reading values
in the target fragment.

1 o v e r r i d e fun onViewCreated (view : View , s a v e d I n s t a n c e S t a t e : Bundle ?) {
2 . . .
3 v a l a r g s : Ga l l e ryF ragmentArgs by navArgs ()
4 v a l s t a r t Imag e = a rg s . s t a r t Imag e
5 . . .
6 }

Listing 3.16: Calling the navigation action from the method onClick()

In Listing no. 3.16, we use the class GalleryFragmentArgs automatically created by mech-
anism SafeArgs, from where we read the passed value. In this way, we can pass not only
simple types but also object types.

For more on parameter passing, see documentation [20].

3.5 Services
A service is a component that allows long-lasting operations such as calculations, wait-
ing for events or network communication. It can run for long periods, even if the user
is dealing with another application. The main components of android can bind to a ser-
vice to interact with it. Services can also perform inter-process communication. We can
distinguish between three types of services:

• Foreground – perform tasks that are noticeable to the user, e.g. playing music.
They need to display notifications even when not interacting directly with the user.
The notification is displayed until the service is running.

• Background – perform background tasks that do not notify the user that they are
running.

• Bound – perform tasks linked to other running components. The lifecycle of a
service is closely related to the lifecycle of other components linked to the service.
Many components can be linked at one time. When the last one disconnects then,
the service is destroyed.

Another division is services of type started – unbounded service and type bounded.
Started, terminate after a task has been performed, while bounded run until the last com-
ponent associated with it. It is possible to create a service that is both of type started and
bound. The difference in type lies in how the service is started and, thus, the implemen-
tation of the callback methods. Figure no. 3.4 shows the order in which the methods are
called and the service states.

30

Figure 3.4: Service lifecycle [21]

Services started are started when another component calls a service using method
startService(). The system then calls methods onCreate, onStartCommand(), when the task
is finished, a method onDestroy() is called. Services of type bounded are started when an-
other component calls the bindService() method. The system then calls methods onCreate,
onBind(). When the last component disconnects, the onUnbind() method is called, and
then method onDestroy() is called. It is noteworthy that when one component starts a
service of type started, the system calls method onBind() when the next component con-
nects.

3.5.1 Creation of services

For the service to be run from the application, it must be declared in the AndroidMani-
fest.xml file 3.17. Only the class name is required.

31

1 <man i f e s t . . . >
2 . . .
3 < a p p l i c a t i o n . . . >
4 < s e r v i c e andro id :name= ” . Examp leSe rv i c e ” / >
5 . . .
6 < / a p p l i c a t i o n >
7 < / man i f e s t >

Listing 3.17: Example of service declaration

We then declare the class of our service by extending class Service. The skeleton of
the class is shown in Listing no. 3.18. It is worth noting that, unlike in Activity, we do
not need to refer to the base class in the methods.

1 c l a s s Examp leSe rv i c e : S e r v i c e () {
2 p r i v a t e var s t a r tMode : I n t = 0 / / i n d i c a t e s how to behave i f the s e r v i c e i s k i l l e d
3 p r i v a t e var b i nde r : I B i n d e r ? = n u l l / / i n t e r f a c e f o r c l i e n t s t h a t b ind
4 p r i v a t e var a l l owReb ind : Boolean = f a l s e / / i n d i c a t e s whether onRebind shou ld be used
5
6 o v e r r i d e fun onCrea te () {
7 / / The s e r v i c e i s be ing c r e a t e d
8 }
9

10 o v e r r i d e fun onStartCommand (i n t e n t : I n t e n t ? , f l a g s : I n t , s t a r t I d : I n t) : I n t {
11 / / The s e r v i c e i s s t a r t i n g , due to a c a l l t o s t a r t S e r v i c e ()
12 r e t u r n s t a r tMode
13 }
14
15 o v e r r i d e fun onBind (i n t e n t : I n t e n t) : I B i n d e r ? {
16 / / A c l i e n t i s b i nd ing to the s e r v i c e with b i n d S e r v i c e ()
17 r e t u r n b i nde r
18 }
19
20 o v e r r i d e fun onUnbind (i n t e n t : I n t e n t) : Boolean {
21 / / A l l c l i e n t s have unbound with unb i ndS e r v i c e ()
22 r e t u r n a l l owReb ind
23 }
24
25 o v e r r i d e fun onRebind (i n t e n t : I n t e n t) {
26 / / A c l i e n t i s b i nd ing to the s e r v i c e with b i n d S e r v i c e () ,
27 / / a f t e r onUnbind () has a l r e a d y been c a l l e d
28 }
29
30 o v e r r i d e fun onDestroy () {
31 / / The s e r v i c e i s no l onge r used and i s be ing de s t r oy ed
32 }
33 }

Listing 3.18: Skeleton service [22]

We use Intent to launch services. We start the intention by calling the appropriate
method depending on the type. In the case of a service of type Started, this is startSer-
vice().

1 I n t e n t (t h i s , Examp leSe rv i c e : : c l a s s . j a v a) . a l s o { i n t e n t −>
2 s t a r t S e r v i c e (i n t e n t)
3 }

Listing 3.19: Launching the service

The topics of the services are quite complex, especially services of the type Bounded.
More information can be found in documentation [23], and [21].

A separate issue is the communication of the results of the services. A recommended
method is to use the component Broadcast Receivers.

3.6 Broadcast Receivers
Bradcast Receivers is a component used to transfer messages between application com-
ponents. This way, the application can inform about the data download and informwhere

32

the data is stored. The component offers great possibilities when receiving system mes-
sages. The application can receive information about system start-up, low battery or, for
example, about connecting a device for charging. Once registered to receive a particu-
lar message, the Android system mechanism automatically ensures that the message is
received. The app’s messages are distributed the same way as system messages.

3.6.1 Receiving broadcasts

Receiving messages is possible in two ways. The first is by registering the receiver in
the manifest file. The second is to register the receiver while the application is running.
This second way means that messages will only be received when the application runs.
An example of registration in the AndroidManifes.xml file is shown in Listing no. 3.20.
The parameter android:exported=”true” specifies that it is possible to receive messages
from other applications. We are registering for the standard defined actions sent by the
system; therefore, the attribute takes the value ”true”.

1 < r e c e i v e r andro id :name= ” . ExampleRece ive r ” a n d r o i d : e x p o r t e d = ” t r u e ” >
2 < i n t e n t − f i l t e r >
3 < a c t i o n andro id :name= ” andro id . i n t e n t . a c t i o n . BOOT_COMPLETED” / >
4 < a c t i o n andro id :name= ” andro id . i n t e n t . a c t i o n . INPUT_METHOD_CHANGED” / >
5 < / i n t e n t − f i l t e r >
6 < / r e c e i v e r >

Listing 3.20: Declaration of receiver in AndroidManifest.xml

Once registered, we need to create a class responsible for receiving the message. It must
inherit from class BradcastReceiver 3.21 and has one callback method onReceive. In the
body of this method, it implements the code to be executed when the action is received.
It is worth noting that the onReceive method receives all actions declared for this class.

1 c l a s s ExampleRece ive r : B r o a d c a s t R e c e i v e r () {
2
3 o v e r r i d e fun onRece ive (c on t e x t : Context , i n t e n t : I n t e n t) {
4 . . .
5
6 }
7 }

Listing 3.21: Example Broadcast Receiver class

The implementation of the second method involves a method called
registerReceiver(). The message handler class instance object and the intention filter re-
sponsible for the action are given as arguments 3.22.

1 . . .
2 v a l examp l eRece i ve r : B r o a d c a s t R e c e i v e r = ExampleRece ive r ()
3 . . .
4
5 v a l f i l t e r = I n t e n t F i l t e r (Connec t i v i tyManager . CONNECTIVITY_ACTION) . app ly {
6 addAct ion (I n t e n t . ACTION_AIRPLANE_MODE_CHANGED)
7 }
8 r e g i s t e r R e c e i v e r (br , f i l t e r)
9 }

Listing 3.22: Context-registered receivers

3.6.2 Sending broadcasts

Sending a message is performed with the help of an object Intent, which is passed to one
of several possible broadcast sending methods.3.23.

33

1 / / Sending to own a c t i o n
2 I n t e n t () . a l s o { i n t e n t −>
3 i n t e n t . s e tA c t i o n (” edu . zu t . e r a smus_p lus . example . MY_ACTION”)
4 i n t e n t . pu tEx t r a (” da t a ” , ” Send with da t a ”)
5 s endBroadca s t (i n t e n t)
6 }
7 / / Sending to a c t i o n with p e rm i s s i on s
8
9 I n t e n t () . a l s o { i n t e n t −>

10 i n t e n t . s e tA c t i o n (” edu . zu t . e r a smus_p lus . example . my_act ion ”)
11 i n t e n t . pu tEx t r a (” da t a ” , ” Send with da t a ”)
12 s endBroadca s t (i n t e n t , Man i f e s t . p e rm i s s i on . SEND_SMS)
13 }

Listing 3.23: Sending bradcast – example

If we define permissions in the method sendBroadcast, only applications that have
the given permission declared can receive this message 3.24.

1 < r e c e i v e r andro id :name= ” . ExampleRece ive r ” a n d r o i d : e x p o r t e d = ” t r u e ” >
2 a n d r o i d : p e rm i s s i o n = ” andro id . p e rm i s s i on . SEND_SMS”>
3 < i n t e n t − f i l t e r >
4 < a c t i o n andro id :name= ” edu . zu t . e r a smus_p lus . example . MY_ACTION” / >
5 < / i n t e n t − f i l t e r >
6 < / r e c e i v e r >

Listing 3.24: Declaration of receiver with permission in AndroidManifest.xml

3.7 Content Provider
The purpose of the Content Provider component is to manage access to data in an appli-
cation that is structured. The component is part of an Android application, which often
provides its own UI for working with data. It is generally used to make data available to
other applications, however, using the Content Provider component exclusively inside the
application also offers many advantages. The main advantages of using Content Provider :

• creating a standard interface for accessing data,

• securing the data against both access and data corruption

• providing a search mechanism using suggestions

The Content Provider provides data in the form of one or more tables, similar to a
relational database. The component coordinates access to the application’s data storage
layer for several different APIs and components, as shown in figure no. 3.5, these include:

• Sharing access to your application’s data with other applications,

• Synchronising application data with the server using
AbstractThreadedSyncAdapter,

• Downloading data to the user interface using CursorLoader.

Access to the data is performed by defining a URI (Uniform Resource Identifier)
address, which is described by document RFC2396 [29].

34

Figure 3.5: Relationship between content provider and other components [28]

3.7.1 Creation of content providers

Creating the content providers requires that the data be prepared accordingly. They should
be in a structured form so that it is possible to store them in the form of tables and thus
store them in a database. This requires the creation of a database, and this is one of the
steps in creating content providers. It is also possible to provide file data stored in the
application’s private memory. The next step is implementing a custom class extending
the Content Providers class. The implementation requires the creation of six callback
methods.

• query() – Based on the arguments passed to themethod, themethod creates a query
and returns the dataset as an object Cursor,

• insert() – Based on the input arguments, it is possible to add data to the content
provider database,

• update() – Method to update data,

• delete() – Method to erase data,

• getType() – Based on the specified URI address, the MIME type is returned ([30],

• onCreate -Method called after the creation of the class object and is used to initialize
the class.

In addition to implementing the above methods, it is necessary to create authority
string as the corresponding URI address.

It is also necessary to add the component information to the “AndroidManifest.xml”
file with the <provider> tag. On the [31] page, you can find a complete example of building
an application and component of type content providers together with a second applica-
tion that uses the provided data. We can find more information on the [32] pages.

35

36 Chapter 4

User interface

The user interface is the part of the application responsible for interacting with the user.
A well-developed interface is essential for the user to operate the application correctly.
We can distinguish between the part responsible for the graphic layout and the part re-
sponsible for handling events. In the Android system, layouts are created using XML
files, which can be supported on the application code side. It is possible to create the
layout only programmatically. The part responsible for handling events is implemented
programmatically.

Layouts allow the arrangement of elements on the page, such as buttons, images, and
text. They define the structure of the android user interface in the application, just like
activities. The user interface in Android is built using two types of objects ViewGroup
and View.

ViewGroup is an object type that can store other objects (ViewGroup and View). It
is also the base class for containers and Layouts. The base parameters for layouts are also
defined in this class (ViewGroup.LayoutParams) [25].

The View class is the base class for widgets, providing a set of basic properties and
listeners to respond to events.

In the Android Studio environment, we have an editor that visually supports the cre-
ation of the graphical interface Figure no. 4.1. In particular, we can extract the following
elements [24]:

1. Palette – Contains various views and view groups that you can drag into your
layout.

2. Component Tree – Shows the hierarchy of components in your layout.

3. Toolbar – Click these buttons to configure your layout appears in the editor and
change layout attributes.

4. Design editor – Edit your layout in Design view, Blueprint view, or both.

5. Attributes – Controls for the selected view’s attributes.

6. View mode – View your layout in either: Code, Design, or Split.

7. Zoom and pan controls – Control the preview size and position within the editor.

Figure 4.1: Layout Editor [24]

4.1 Create a layout
Layout files are typical resources and, according to the accepted file and directory struc-
ture in the Android project, are stored in the resources directory res in the subdirectory
res/layout. In addition, the system allows for variant layout files, which will enable the
layout to be defined according to different screen sizes. During operation, the system
will select the layout appropriate for the screen’s type or orientation. If none is available,
the default one from the directory res/layout will be selected. Listing no. 4.1 shows the
variant catalogues for portrait (default) and landscape screens for two types of devices,

1 r e s / l a y ou t / ma i n _ a c t i v i t y . xml # De f a u l t
2 r e s / l ayou t − l and / ma i n _ a c t i v i t y . xml # De f a u l t i n l and s c ape
3 r e s / l ayou t −sw600dp / ma i n _ a c t i v i t y . xml # For ”7 t a b l e t s
4 r e s / l ayou t −sw600dp − l and / ma i n _ a c t i v i t y . xml # For ”7 t a b l e t s in l and s c ape

Listing 4.1: Example of a variant directory structure with layouts

The Android Studio environment allows layout files to be added in several ways.
The most common method is to select a particular layout directory and add a resource
file via the right-click context menu “New→ Layout Resource File”.

The next step is to open the newly created file in Layout Editor. The selection of the
appropriate Layout type depends on the application’s requirements. The Android API
provides the following types of layouts (subclass of ViewGroup):

• LinearLayout – arranges other views either horizontally in a single column or ver-
tically in a single row, depending on parameter android:orientation

• RelativeLayout – displays child views in relative positions. The position of each
view can be specified as relative to the parent element or in positions relative to
the parent area.

37

• FrameLayout – is used to block off an area on the screen to display a single element.
In general, a FrameLayout should be used to hold a single child view.

• GridLayout – places its children in a rectangular grid.

• RecyclerView – displays the list items; each list item has a layout, which can be
one of the predefined ones, or you can create your own. The use of RecylerView
forces the use of an adapter on the code side.

• ConstraintLayout – default layout for newly created applications, allows creating
large and complex layouts with a flat hierarchy of views. Similar to RelativeLayout,
but more flexible

The topic of layout creation is very extensive. In the documentation, you can find
practical advice on properly creating a Layout [26] in the next subsection. We will focus
exclusively on ConstrantLayout [27].

4.1.1 ConstraintLayout

This type of layout is the default layout. A correctly defined element requires two con-
straints to be defined. It is important to note that when using visual Layout Editor, the
constraint values are often not defined at the beginning.

Various types of constraints that you can use [26]:

• Relative positioning – allows you to define a position in relation to another object,

• Margins – enforcing the margin as a space between the target and the source side,

• Centering positioning and Bias – centring object, We can also define Bias, which
determines the offset ratio,

• Circular positioning – widget centre relative to another widget centre, at an angle
and a distance,

• Visibility behaviour – allows you to handle widgets as View.GONE

• Dimension constraints – define minimum and maximum sizes for the Constraint-
Layout itself

• Chains – provide group-like behaviour in a single axis (horizontally or vertically).
The other axis can be constrained independently.

In addition to a visual editor, Android Studio provides typical layouts for many ap-
plications and code. An example of such a typical layout is the login form. To add it,
right-click on the layout directory “→ New → Activity (or Fragment) → Login Ac-
tivity (or Login Fragment)”. The environment will automatically create the necessary
entries and enter the required information into the AndroidManifes.xml file.

The generated layout can be found in Listing no. 4.2. The created Layout consists of
one object of type ViewGroup:ConstraintLayout, and four view: two EditText, a Button,
and a ProgressBar are of type View. Figure no. 4.2 shows the created view.

38

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 <andro idx . c o n s t r a i n t l a y o u t . widget . Con s t r a i n t L ayou t xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
3 xmlns :app= ” h t t p : / / schemas . and ro id . com / apk / res − auto ”
4 xm l n s : t o o l s = ” h t t p : / / schemas . and ro id . com / t o o l s ”
5 a n d r o i d : i d = ”@+ id / c o n t a i n e r ”
6 a n d r o i d : l a y ou t _w i d t h = ” match_parent ”
7 a n d r o i d : l a y o u t _ h e i g h t = ” match_parent ”
8 a n d r o i d : p a d d i n g L e f t = ”@dimen / a c t i v i t y _ h o r i z o n t a l _m a r g i n ”
9 and ro id : padd ingTop= ”@dimen / a c t i v i t y _ v e r t i c a l _m a r g i n ”

10 and r o i d : p a d d i n gR i gh t = ”@dimen / a c t i v i t y _ h o r i z o n t a l _m a r g i n ”
11 andro id : padd ingBo t t om=”@dimen / a c t i v i t y _ v e r t i c a l _m a r g i n ”
12 t o o l s : c o n t e x t = ” . u i . l o g i n . Login ” >
13
14 < Ed i t T e x t
15 a n d r o i d : i d = ”@+ id / username ”
16 and r o i d : l a y ou t _w i d t h = ” 0dp ”
17 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
18 and ro i d : l a you t _marg inTop = ” 96 dp ”
19 a n d r o i d : a u t o f i l l H i n t s = ” @str ing / prompt_emai l ”
20 a n d r o i d : h i n t = ” @str ing / prompt_emai l ”
21 and r o i d : i n pu tType = ” t e x tEma i lAdd r e s s ”
22 a n d r o i d : s e l e c tA l l On F o c u s = ” t r u e ”
23 app : l a y ou t _ c on s t r a i n t End_ t oEndO f = ” pa r en t ”
24 a p p : l a y o u t _ c o n s t r a i n t S t a r t _ t o S t a r t O f = ” pa r en t ”
25 app : l a you t _ c on s t r a i n tTop_ t oTopO f = ” pa r en t ” / >
26
27 < Ed i t T e x t
28 a n d r o i d : i d = ”@+ id / password ”
29 a nd r o i d : l a y ou t _w i d t h = ” 0dp ”
30 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
31 and ro i d : l a you t _marg inTop = ” 8dp ”
32 a n d r o i d : a u t o f i l l H i n t s = ” @str ing / prompt_password ”
33 a n d r o i d : h i n t = ” @str ing / prompt_password ”
34 and r o i d : imeAc t i o nL ab e l = ” @str ing / a c t i o n _ s i g n _ i n _ s h o r t ”
35 and ro i d : imeOp t i on s = ” ac t ionDone ”
36 and r o i d : i n pu tType = ” t ex tPa s sword ”
37 a n d r o i d : s e l e c tA l l On F o c u s = ” t r u e ”
38 app : l a y ou t _ c on s t r a i n t End_ t oEndO f = ” pa r en t ”
39 a p p : l a y o u t _ c o n s t r a i n t S t a r t _ t o S t a r t O f = ” pa r en t ”
40 app : l a you t _ c on s t r a i n tTop_ t oBo t t omOf = ”@+ id / username ” / >
41
42 <But ton
43 a n d r o i d : i d = ”@+ id / l o g i n ”
44 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
45 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
46 a n d r o i d : l a y o u t _ g r a v i t y = ” s t a r t ”
47 and ro i d : l a you t _marg inTop = ” 16 dp ”
48 and ro i d : l a you t _marg inBo t t om=” 64 dp ”
49 a n d r o i d : e n a b l e d = ” f a l s e ”
50 a n d r o i d : t e x t = ” @str ing / a c t i o n _ s i g n _ i n ”
51 app : l a you t _ con s t r a i n tBo t t om_ t oBo t t omOf = ” pa r en t ”
52 app : l a y ou t _ c on s t r a i n t End_ t oEndO f = ” pa r en t ”
53 a p p : l a y o u t _ c o n s t r a i n t S t a r t _ t o S t a r t O f = ” pa r en t ”
54 app : l a you t _ c on s t r a i n tTop_ t oBo t t omOf = ”@+ id / password ”
55 a p p : l a y o u t _ c o n s t r a i n t V e r t i c a l _ b i a s = ” 0 . 2 ” / >
56
57 <P rog r e s sBa r
58 a n d r o i d : i d = ”@+ id / l o a d i n g ”
59 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
60 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
61 a n d r o i d : l a y o u t _ g r a v i t y = ” c e n t e r ”
62 and ro i d : l a you t _marg inTop = ” 64 dp ”
63 and ro i d : l a you t _marg inBo t t om=” 64 dp ”
64 a n d r o i d : v i s i b i l i t y = ” gone ”
65 app : l a you t _ con s t r a i n tBo t t om_ t oBo t t omOf = ” pa r en t ”
66 app : l a y ou t _ c on s t r a i n t End_ t oEndO f = ”@+ id / password ”
67 a p p : l a y o u t _ c o n s t r a i n t S t a r t _ t o S t a r t O f = ”@+ id / password ”
68 app : l a you t _ c on s t r a i n tTop_ t oTopO f = ” pa r en t ”
69 a p p : l a y o u t _ c o n s t r a i n t V e r t i c a l _ b i a s = ” 0 . 3 ” / >
70
71 < / andro idx . c o n s t r a i n t l a y o u t . widge t . Con s t r a i n t L ayou t >

Listing 4.2: Example of Login layout

The Layout file follows the syntax of XML files. Hence there are characteristic ele-
ments, e.g. line no. 1 contains the obligatory definition of an XML file. Each object defi-
nition starts with the object class name preceded by “<” and ends with the class name as
well, but is preceded by “</” and ends with“>”.

It can be seen that the positions of the individual widgets are defined in relation
(link) to other objects. Let us examine the definition of the button line by line 4.3. It
is worth noting that some properties are common regardless of the type of object (lines
2–9), while lines 10–14 contain layout-specific properties Constraint Layout:

39

Figure 4.2: Example Login Layout

1. Object type definition – Button

2. Object identifier

3. Object width

4. Height of object

5. Gravity defines how the component should be placed in its cell group

6. Defines additional space from the top of the component

7. Defines additional space from the bottom of this component

8. The component is not active. Its state can be changed programmatically. In this
case, the Login button will be activated when the user enters the login data.

9. Define the text to be displayed on the button. It is recommended that all constants
are defined in the string.xml file of the application. In this case, the name is defined
in the constant 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑖𝑔𝑛_𝑖𝑛.

10. Align the bottom of an object to the bottom of another object.

11. Align the right (end) part of an object to the right part of another object.

12. Align the left(initial) part of an object to the left part of another object.

13. Align the top part of an object to the bottom part of another object.

40

14. Position an object along the horizontal axis, considering the bias value.

1 <But ton
2 a n d r o i d : i d = ”@+ id / l o g i n ”
3 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
4 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
5 a n d r o i d : l a y o u t _ g r a v i t y = ” s t a r t ”
6 and ro i d : l a you t _marg inTop = ” 16 dp ”
7 and ro i d : l a you t _marg inBo t t om=” 64 dp ”
8 a n d r o i d : e n a b l e d = ” f a l s e ”
9 a n d r o i d : t e x t = ” @str ing / a c t i o n _ s i g n _ i n ”

10 app : l a you t _ con s t r a i n tBo t t om_ t oBo t t omOf = ” pa r en t ”
11 app : l a y ou t _ c on s t r a i n t End_ t oEndO f = ” pa r en t ”
12 a p p : l a y o u t _ c o n s t r a i n t S t a r t _ t o S t a r t O f = ” pa r en t ”
13 app : l a you t _ c on s t r a i n tTop_ t oBo t t omOf = ”@+ id / password ”
14 a p p : l a y o u t _ c o n s t r a i n t V e r t i c a l _ b i a s = ” 0 . 2 ” / >

Listing 4.3: Definition of button placement

Android provides a great deal of scope for shaping the appearance and positioning
of objects, but learning all of them at an early stage is difficult. It should be added, how-
ever, that many attributes defining the location of individual objects and their behaviour
coincide with the principles of creating interfaces, e.g. in web systems or creating appli-
cations in high-level languages. A separate issue is that different teams often handle the
design, ensuring graphically consistent layouts and correct interaction with the user. The
aforementioned templates or built-in graphical user interface tools are recommended for
beginners.

4.2 Material Design
When designing a layout, it is worth (and even should) using the design pattern pro-
posed by GoogleMaterial Design [34]. It was introduced in 2014 and is being developed
all time. The 3rd version of this pattern [33] has now been introduced. Material De-
sign was developed for Android and web apps. It can also be used for other systems.
The introduction of Material Design aimed to standardise the user experience across all
platforms and device sizes. This is done by defining guidelines for:

• principles of three-dimensionality (appropriate depths, shadows)

• the set of components – e.g. Cards, Dialogs, Menus, Lists, Sliders and many others

• colour sets

• font set

• icon set, or how to create your icons

• definitions of common shapes, e.g. rectangles and how to describe roundings

• animations

• interaction

The description page Material Design [34] provides, in addition to a detailed de-
scription of the listed elements, many tools to create interfaces quickly. For popular
applications among interface designers (e.g. Figma [35]), documents and tools for the

41

rapid creation of interfaces are provided. It should be added that, despite standardisa-
tion, individual applications differ. The user mainly uses a common way of interaction
by operating the applications with identical gestures or visually similar widgets. It should
be emphasised that by using a design pattern to create the interface, users use the applica-
tion in a very similar way and thus quickly and easily “learn” how to use it by replicating
the already familiar interaction.

4.2.1 Interface development tools

The main page describing Material Design issues contains several tools for faster inter-
face creation. If you want to build an interface correctly, it is necessary to familiarise
yourself with the information contained there. Many documents are available describ-
ing the principles of interface construction, implementation details and, above all, good
practices.

To bring the issue of interface construction a bit closer, we will present a compo-
nent often used in applications. It is used to attractively give a group of objects or an
ordered list. The component Cards is described in detail on page https://material.
io/components/cards/android#card.

Cards can, in addition to presenting a title and short content, present multimedia
elements and include an action, which most often serves as a transition to a more detailed
presentation of an item. Figure no. 4.3 contains the presentation of the structure of the
elements in the component.

Figure 4.3: Structure of the Cards component [34]

42

1. Container – Card containers hold all card elements, and their size is determined by
the space those elements occupy. The container expresses card elevation.

2. Thumbnail [optional] – Cards can include thumbnails to display an avatar, logo, or
icon.

3. Header text [optional] – Header text can include things like the name of a photo
album or article.

4. Subhead [optional] – Subhead text can include text elements such as an article
byline or a tagged location.

5. Media [optional] – Cards can include a variety of media, including photos, and
graphics, such as weather icons.

6. Supporting text [optional] – Supporting text includes text like an article summary
or a restaurant description.

7. Buttons [optional] – Cards can include buttons for actions.

8. Icons [optional] – Cards can include icons for actions.

Listing no. 4.4 contains an example of layout code. The definition Cards starts at
line no. 7 and refers to class com.google.android.material.card.MaterialCardView, so that
we can use object-specific settings in the code. (The listing is on the next page.)

43

1 <? xml v e r s i o n = ” 1 . 0 ” encod ing= ” u t f −8 ” ?>
2 <L inea rLayou t xm ln s : and ro i d = ” h t t p : / / schemas . and ro id . com / apk / r e s / and ro id ”
3 xmlns :app= ” h t t p : / / schemas . and ro id . com / apk / res − auto ”
4 a nd r o i d : l a y ou t _w i d t h = ” match_parent ”
5 a n d r o i d : l a y o u t _ h e i g h t = ” match_parent ” >
6
7 <com . goog l e . and ro id . m a t e r i a l . c a rd . Mate r i a lCardView
8 a n d r o i d : i d = ”@+ id / ca rd ”
9 a nd r o i d : l a y ou t _w i d t h = ” match_parent ”

10 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
11 and r o i d : l a y ou t _ma r g i n = ” 8dp ”>
12
13 <L inea rLayou t
14 a nd r o i d : l a y o u t _w i d t h = ” match_parent ”
15 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
16 a n d r o i d : o r i e n t a t i o n = ” v e r t i c a l ”
17 and ro i d : b a ckg round = ” @color / d e s i g n _ d e f a u l t _ c o l o r _ s e c o n d a r y ” >
18
19 < ! −− Media −−>
20 <ImageView
21 and r o i d : l a y ou t _w i d t h = ” match_parent ”
22 a n d r o i d : l a y o u t _ h e i g h t = ” 194 dp ”
23 app : s rcCompat= ”@drawable / Erasmus ”
24 a n d r o i d : s c a l e T yp e = ” f i t C e n t e r ”
25 a n d r o i d : c o n t e n tD e s c r i p t i o n = ” @str ing / c on t e n t _ d e s c r i p t i o n _med i a ”
26 / >
27
28 <L inea rLayou t
29 a nd r o i d : l a y ou t _w i d t h = ” match_parent ”
30 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
31 a n d r o i d : o r i e n t a t i o n = ” v e r t i c a l ”
32 and r o i d : p a dd i ng = ” 16 dp ”>
33
34 < ! −− T i t l e , s e condary and suppo r t i ng t e x t −−>
35 <TextView
36 and r o i d : l a y ou t _w i d t h = ” wrap_content ”
37 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
38 a n d r o i d : t e x t = ” @str ing / t i t l e ”
39 and r o i d : t e x tApp e a r an c e = ” ? a t t r / t e x tAppea r anceHead l i n e6 ”
40 / >
41
42 <TextView
43 and r o i d : l a y ou t _w i d t h = ” wrap_content ”
44 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
45 and ro i d : l a you t _marg inTop = ” 8dp ”
46 a n d r o i d : t e x t = ” @str ing / s e c ond a r y _ t e x t ”
47 and r o i d : t e x tApp e a r an c e = ” ? a t t r / t ex tAppearanceBody2 ”
48 a n d r o i d : t e x t C o l o r = ” #004D40 ” / >
49
50 <TextView
51 and r o i d : l a y ou t _w i d t h = ” wrap_content ”
52 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
53 and ro i d : l a you t _marg inTop = ” 16 dp ”
54 a n d r o i d : t e x t = ” @str ing / s u p p o r t i n g _ t e x t ”
55 and r o i d : t e x tApp e a r an c e = ” ? a t t r / t ex tAppearanceBody2 ”
56 a n d r o i d : t e x t C o l o r = ” #004D40 ” / >
57
58 < / L inea rLayou t >
59
60 < ! −− But tons −−>
61 <L inea rLayou t
62 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
63 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
64 and r o i d : l a y ou t _ma r g i n = ” 8dp ”
65 a n d r o i d : o r i e n t a t i o n = ” h o r i z o n t a l ” >
66
67 <com . goog l e . and ro id . m a t e r i a l . bu t ton . Ma t e r i a l Bu t t on
68 s t y l e = ” ? a t t r / b o r d e r l e s s B u t t o n S t y l e ”
69 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
70 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
71 and ro i d : l a you t _marg inEnd = ” 8dp ”
72 a n d r o i d : t e x t = ” @str ing / a c t i o n _ 1 ”
73 a n d r o i d : t e x t C o l o r = ” #5 E35B1 ” / >
74
75 <com . goog l e . and ro id . m a t e r i a l . bu t ton . Ma t e r i a l Bu t t on
76 s t y l e = ” ? a t t r / b o r d e r l e s s B u t t o n S t y l e ”
77 a nd r o i d : l a y ou t _w i d t h = ” wrap_content ”
78 a n d r o i d : l a y o u t _ h e i g h t = ” wrap_content ”
79 a n d r o i d : t e x t = ” @str ing / a c t i o n _ 2 ”
80 a n d r o i d : t e x t C o l o r = ” #5 E35B1 ” / >
81 < / L inea rLayou t >
82
83 < / L inea rLayou t >
84
85 < / com . goog l e . and ro id . m a t e r i a l . c a rd . Mate r i a lCardView>
86 < / L inea rLayou t >

Listing 4.4: Example of a layout for a component (Cards)

44

Based on the layout code shown above, we obtain the view in Figure no. 4.4. In
addition to the layout view, the depicted figure also contains a “blueprint”. This rep-
resentation of the view is very helpful, as it includes information on the boundaries of
individual objects, obscured or hidden objects.

Figure 4.4: Example use of the component (Cards)

4.2.2 Color

Important for each application is the appropriate colour scheme. According to the phi-
losophy Material Design, they should be vibrant but not bright. Each application can
choose these at its discretion. However, it should stick to the guidelines. It is also es-
sential that the choice of colours is appropriate for readability and provides adequate
contrast between text and background. Another aspect is the selection of colours for the
accessibility of the application.

Two main colours are used to create colour palettes for the app. The primary one
is the base for creating further variations of it and is labelled 500. Based on this, colours
labelled from 50–900 should be generated, where those from 50–400 are lighter than it,
and those from 600–900 are darker.

45

The second (secondary) colour should stand out strongly from the primary colour
and be used to highlight important interactive design elements, such as action buttons
or links. It should also come from the secondary palette (marked with an A in the figure
above) and be more saturated.

Figure 4.5: Examples of colour sets for apps proposed by Google in 2014 [34]

Google has provided a tool [36] that assists in selecting an appropriate colour scheme
and includes detailed information on the availability of the chosen colour variant.

4.2.3 System icons

An important issue in the application is using appropriate symbols and icons to include
marking actions or highlighting the functions of individual widgets. The tool provided
at https://fonts.google.com/icons [37] allows one to search from more than 2,500
glyphs for a fitting symbol (icon) with its styling. Symbols are available in three styles
and four adjustable variable font styles (fill, weight, genre and optical size)

46

Chapter 5 47

Sensors

Android mobile devices are usually equipped with several different sensors to determine
the device’s movement, orientation or measurements of environmental conditions such
as pressure or temperature. The quality and type of sensors built into the device depend-
ing on the model. Sensors enable new ways of interacting with the user (compared to
desktop devices). They allow more convenient use of the device and provide new possi-
bilities. Through the use of a range of sensors and the fusion of their data, applications
can deliver specific content based on the user’s current context. An example of such an
application that has achieved considerable success is the game Pokémon GO [38].

Sensor support in Android they are divided into two types. Sensors are handled
through a dedicated API, and sensors we can take with a common framework Sensors.
This framework supports three main categories of sensors:

• Motion sensors, are used to measure the movement of a device. These sensors
include accelerometers, gravity sensors, gyroscopes and rotation vector sensors.

• Environmental sensors measure various environmental conditions such as ambi-
ent air temperature and pressure, lighting and humidity. These sensors include
barometers, photometers (light sensors) and thermometers.

• Position sensors, measure the physical position of a device. This category includes
magnetometers (geomagnetic field sensors) and proximity sensors.

With the dedicated API, we support sensors such as :

• device camera,

• fingerprint sensor,

• microphone,

• GNSS modules (e.g. GPS module).

5.1 Sensor Framework
Sensor Framework is a set of classes andmethods that defines sensor types, reading their
properties such as maximum range or energy requirements. It also allows to specify of
the minimum data acquisition frequency, register and de-register feedback methods for
reading values and changes in sensor accuracy.

The framework consists of four main classes:

• SensorManager : Allows us to create a custom instance of the system service to
access sensors. We can specify the type of embedded sensors, their properties and
register and unregister methods to retrieve sensor values.

• Sensor : A class representing a single sensor provides methods to specify the sen-
sor’s capabilities.

• SensorEvent: Represents information about a sensor event. This event contains the
raw sensor data, sensor type, data accuracy and a timestamp for the event.

• SensorEventListener : A programming interface, allowing event handlers to receive
notifications of new sensor data or information about a change in sensor accuracy.

1 c l a s s S e n s o rA c t i v i t y : A c t i v i t y () , S e n s o r E v en t L i s t e n e r {
2 p r i v a t e l a t e i n i t var sensorManager : SensorManager
3 p r i v a t e var mSensor : Sensor ? = n u l l
4
5 p u b l i c o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
6 . . .
7 sensorManager = g e t S y s t emSe r v i c e (Contex t . SENSOR_SERVICE) as SensorManager
8
9 / / In t h i s c a s e we use the l i g h t s en so r

10 mSensor = sensorManager . g e tD e f a u l t S e n s o r (Sensor . TYPE_LIGHT)
11
12 }
13
14 o v e r r i d e fun onAccuracyChanged (s en so r : Sensor , a c cu ra cy : I n t) {
15 / / Do something here i f s en so r a c cu ra cy changes .
16 }
17
18 o v e r r i d e fun onSensorChanged (even t : SensorEven t) {
19 / / The l i g h t s en so r r e t u r n s a s i n g l e va l u e .
20 v a l s e n s o r _ v a l u e = even t . v a l u e s [0]
21 / / Do something with t h i s s en so r va l u e .
22 }
23
24 o v e r r i d e fun onResume () {
25 super . onResume ()
26 . . .
27 mSensor ? . a l s o { s en so r −>
28 sensorManager . r e g i s t e r L i s t e n e r (t h i s , s ensor , SensorManager . SENSOR_DELAY_NORMAL)
29 }
30 }
31
32 o v e r r i d e fun onPause () {
33 super . onPause ()
34 sensorManager . u n r e g i s t e r L i s t e n e r (t h i s)
35 }
36 }

Listing 5.1: Skeleton using the Sensor Framework

The example code in Listing no. 5.1 contains complete code for reading one sensor.
In line of code no. 7, we refer to the system service and access our instance of the object of
class SensorManager, with its use in line no. 10, we read the values of the selected sensor.
In this case, we read the light sensor, which is one-dimensional. Table no. 5.1 shows the
possible sensors. In line no. 1 (class definition), we refer to the interface SensorEventLis-
tener, which acts as a callback and provides two methods:

1. onAccuracyChanged(sensor: Sensor, accuracy: Int) – this method is called when the
accuracy of the sensor changes.

2. onSensorChanged(event: SensorEvent) – this method is called when the sensor value
changes. The value is passed as an object in the form of a three-dimensional array
of class SensorEvent. We read the actual data values from the specified table cell. If
the sensor is one-dimensional, then we read from the table’s first cell. In the case
of sensors, e.g. an accelerometer, we read the following 3 values from the table,
and these represent the individual axes (X, Y, Z)

48

The last step to read out the sensor data values is registering them. If we want
to read the values continuously, it is necessary that the logging takes place accord-
ing to the correct activity life cycle. For this reason, logging should be performed in
method onResume(). The method sensorManager.registerListener (this, sensor, SensorMan-
ager.SENSOR_DELAY_NORMAL) contains three parameters: the first parameter specifies
the callback methods (in this case, it uses the global for the listener class, hence the key-
word this), the second parameter specifies the sensor object and the last parameter is the
refresh rate. It is also necessary to unregister the sensor listener, which should be done
in method onPause().

Depending on our needs, we can use one of the 4 defined refresh rates [39]

• SENSOR_DELAY_FASTEST – get sensor data as fast as possible (0 ms)

• SENSOR_DELAY_GAME – rate suitable for games (20 ms)

• SENSOR_DELAY_NORMAL – rate (default) suitable for screen orientation changes
(60 ms)

• SENSOR_DELAY_UI – rate suitable for the user interface (200 ms)

The refresh times indicate that data will be available no faster than the value provided.
Much depends on the phone model itself and the processor load. Refresh rate SEN-
SOR_DELAY_FASTEST means that data is downloaded as often as the system can. It
should also be added that a higher refresh rate results in higher energy consumption by
having to execute the method service onSensorChanged() more often. In addition, the
method should only be used to retrieve and retain data. A separate mechanism should
be set up for processing so that the possibility of retrieving data through pending sub-
sequent events from the sensors is not blocked. Therefore, frequency reduction should
always be considered to save energy and thus reduce performance hassles.

Tab. 5.1: Sensor types supported by the Android platform [39]

.

Sensor Used for
TYPE_ACCELEROMETER Motion detection (shake, tilt, and so on).
TYPE_AMBIENT_TEMPERATURE Monitoring air temperature.
TYPE_GRAVITY Motion detection (shake, tilt, and so on).
TYPE_GYROSCOPE Rotation detection (spin, turn, and so on).
TYPE_LIGHT Controlling screen brightness.
TYPE_LINEAR_ACCELERATION Monitoring acceleration along a single axis.
TYPE_MAGNETIC_FIELD Creating a compass.
TYPE_ORIENTATION Determining device position.
TYPE_PRESSURE Monitoring air pressure changes.
TYPE_PROXIMITY Phone position during a call.
TYPE_RELATIVE_HUMIDITY Monitoring ambient humidity (relative and

absolute), and dew point.
TYPE_ROTATION_VECTOR Motion and rotation detection.
TYPE_TEMPERATURE Monitoring temperatures.

49

5.2 Location
Presenting the current position of a device is one of the main advantages of a mobile
device. It provides the possibility of giving data based on the context of the work. The
current determination of the position is used in many applications, ranging from naviga-
tion, searching for points of interest (POI), or checking, for example, weather conditions
in a given area. The device’s position (user) is sensitive data, so it is necessary to provide
the application with permission to determine the position.

Currently, the most recommended approach to determining position is to use the
Location API available in Google Play services. It uses a mechanism to determine posi-
tion based on data from different providers, e.g. GNSS (GPS) module, WiFi module, and
Bluetooth. The mechanism Fused Location Provider allows the use of information from
previous queries, thus optimising energy consumption and speeding up position deter-
mination. The Android system allows you to determine whether the application requires
an exact or approximate position. The use of location in an application requires several
steps:

1. Definition of the location type

2. Requesting permission to locate the device

3. Fetching the location (last known, cyclic download of location)

4. Using the location, e.g. to show a point on the map

In the system, the location can be defined as coarse or as fine. From API level 29
(Android 10), it is still necessary to determine whether the location is of type Foreground
location or Background location. Listing no. 5.2 shows how permissions are declared in
the manifest file.

1 <man i f e s t . . . >
2 . . .
3 < ! −− Always i n c l u d e t h i s p e rm i s s i on −−>
4 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_COARSE_LOCATION” / >
5
6 < ! −− I n c l u d e only i f your app b e n e f i t s from p r e c i s e l o c a t i o n a c c e s s . −−>
7 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_FINE_LOCATION” / >
8 < ! −− Recommended f o r Android 9 (API l e v e l 2 8) and lower . −−>
9 < ! −− Requ i r ed f o r Android 10 (API l e v e l 2 9) and h ighe r . −−>

10 . . .
11 < ! −− Requ i r ed only when r e q u e s t i n g background l o c a t i o n a c c e s s on
12 Android 10 (API l e v e l 2 9) and h ighe r . −−>
13 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_BACKGROUND_LOCATION” / >
14 . . .
15 < a p p l i c a t i o n . . . >
16 < s e r v i c e
17 andro id :name= ” MyNav iga t i onSe rv i c e ”
18 and r o i d : f o r e g r oundS e r v i c eTyp e = ” l o c a t i o n ” . . . >
19 < / s e r v i c e >
20 < / a p p l i c a t i o n >
21 . . .
22 < / man i f e s t >

Listing 5.2: Defining permissions in the AndroidManifest.xml file

When requesting permissions, i.e. asking the user for permission, the rule is that
we ask for permissions the first time they are used. In earlier versions, the user allowed
permissions on installation, which, with many permissions, was incomprehensible to the
user. He accepted them all with one permission. Some applications abuse permissions in
this way. The mechanism for requesting permissions will be presented in the following

50

subsection. A detailed mechanism for requesting permissions for a location is shown at
https://developer.android.com/training/location/permissions [40].

The third step is to retrieve the location. Here, we can consider the case when lo-
cation information is needed once in the application without refreshing it during con-
tinuous use. In this case, we can use method getLastLocation() or getCurrentLocation() .
We then use Google Play Services, so it is necessary to add a library usage declaration to
build.gradle (Listing no. 5.3)

1 app ly p l u g i n : ’ com . andro id . a p p l i c a t i o n ’
2
3 . . .
4
5 dependenc i e s {
6 imp l emen ta t i on ’ com . goog l e . and ro id . gms :p lay − s e r v i c e s − l o c a t i o n : 2 1 . 0 . 0 ’
7 }

Listing 5.3: Defining Google Play location services

The next step is to create your Provider instance (Listing no. 5.4) and to use a method
in your application code that retrieves items from the system Provider (Listing no. 5.5).

1 p r i v a t e l a t e i n i t var f u s e d L o c a t i o nC l i e n t : F u s e d L o c a t i o n P r o v i d e rC l i e n t
2
3 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
4 / / . . .
5
6 f u s e d L o c a t i o nC l i e n t = L o c a t i o n S e r v i c e s . g e t F u s e d L o c a t i o n P r o v i d e rC l i e n t (t h i s)
7 }

Listing 5.4: Using fused location provider

1 f u s e d L o c a t i o nC l i e n t . l a s t L o c a t i o n
2 . a ddOnSuc c e s sL i s t ene r { l o c a t i o n : Lo c a t i on ? −>
3 / / Got l a s t known l o c a t i o n . In some r a r e s i t u a t i o n s t h i s can be n u l l .
4 }

Listing 5.5: Get location from provider

Retrieving the last known location is the fastest, but in some situations, the location may
not be obtained, and an appropriate procedure should be implemented.

In the case where we want to receive cyclic location information, it is necessary to
define return methods to receive notifications, and to start the retrieval of data accord-
ingly according to the life cycle of the activity (or other component).

Listing no. 5.6 shows a fragment of an activity in which the location is cyclically
updated [41]. The location information is cyclically received in the callback method on-
LocationResult, whose body is defined in lines 13–18. To receive this information, it is
necessary, in addition to the previously mentioned permissions, to trigger the update of
the location. In this example, this is contained in its own method startLocationUpdate()
(code lines 28–32).It refers to one of the implementations requestLocationUpdates, where
we specify the location conditions(locationRequest), the object to handle the location in-
formation event (locationCallback) and the thread in which the event is to be called. In
this case, we use the main thread and thus can directly refer to objects on the GUI. This
method is called the activity lifecycle method onResume(). The start of the listener in this
code depends on a logical variable requestingLocationUpdates. This provides the possibil-
ity to control the application. The termination of location event retrieval is implemented
in method stopLocationUpdates(), which can be called at any time and is always called
when the activity is no longer visible on the screen.

51

1 p r i v a t e l a t e i n i t var l o c a t i o nC a l l b a c k : L o c a t i o nCa l l b a c k
2 p r i v a t e l a t e i n i t var l o c a t i o nR e q u e s t : L o c a t i onReque s t
3
4 . . .
5 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
6 . . .
7 l o c a t i o nR e q u e s t = Loc a t i onReque s t . c r e a t e () ? . app ly {
8 i n t e r v a l = 10000
9 f a s t e s t I n t e r v a l = 5000

10 p r i o r i t y = Loc a t i onReque s t . PRIORITY_HIGH_ACCURACY
11 }
12 l o c a t i o nC a l l b a c k = o b j e c t : L o c a t i o nCa l l b a c k () {
13 o v e r r i d e fun onLo c a t i o nRe su l t (l o c a t i o n R e s u l t : L o c a t i o nR e s u l t ?) {
14 l o c a t i o n R e s u l t ? : r e t u r n
15 f o r (l o c a t i o n in l o c a t i o n R e s u l t . l o c a t i o n s) {
16 / / Update UI with l o c a t i o n da t a
17 . . .
18 }
19 }
20 }
21 }
22
23 o v e r r i d e fun onResume () {
24 super . onResume ()
25 i f (r e q u e s t i n gLo c a t i o nUpd a t e s) s t a r t L o c a t i o nUpd a t e s ()
26 }
27
28 p r i v a t e fun s t a r t L o c a t i o nUpd a t e s () {
29 f u s e d L o c a t i o nC l i e n t . r e qu e s t L o c a t i o nUpda t e s (l o c a t i o nRequ e s t ,
30 l o c a t i o nC a l l b a c k ,
31 Looper . getMainLooper ())
32 }
33
34 o v e r r i d e fun onPause () {
35 super . onPause ()
36 s t opLo c a t i onUpda t e s ()
37 }
38
39 p r i v a t e fun s t opLo c a t i onUpda t e s () {
40 f u s e d L o c a t i o nC l i e n t . r emoveLoca t ionUpda tes (l o c a t i o nC a l l b a c k)
41 }

Listing 5.6: Using fused location provider

5.3 Request permissions
The Android system isolates individual applications in a sandbox, thus increasing secu-
rity. If an application uses external or system resources, appropriate permissions must
be granted. Permissions are divided into two groups, normal permissions, which do not
require the user’s permission, and so-called dangerous permissions, which need direct
permission to use. Dangerous rights are often related to access to sensitive data, such as
location data. Ordinary and unsafe permissions must first be entered in file AndroidMan-
ifest.xml (e.g. Listing no. 5.2). The next step is to ensure an appropriate workflow ac-
cording to Google’s recommendationshttps://developer.android.com/training/
permissions/requesting#workflow_for_requesting_permissions. A diagram
showing how to request permissions is shown in Figure no. 5.1

The diagram contains eight steps:
1. Declaration of permissions on file AndroidManifest.xml

2. The GUI design should allow the user to allow a specific action associated with a
permission request.

3. Wait for user response, do not force assignment of permissions without user inter-
vention

4. When the user takes action, first verify that permissions are already granted. You
should verify the permissions every time the invoked method needs permission.

52

Figure 5.1: Workflow for declaring and requesting runtime permissions on Android [42]

5. Show the user information about why you need this permission. Usually, after the
first refusal, we show this information. The first time you ask for this permission,
you may not show this message.

6. Ask for the application request. The system will show the system permission in-
formation. When the user allows it, this ends the procedure.

7. Wait for the user’s response.

8. In case of a first refusal, we show the user extended information why the permis-
sion is needed. In case of another refusal, we reduce the application’s functionality,
and if this is not possible and the permission is necessary, we close the application.

The described procedure is universal for all types of entitlements. Listing no. 5.7
shows an example code to create a request for permission and to handle cases of the first
as well as the second refusal. The permission request is for access to a camera Mani-
fest.permission.CAMERA. For readability, only the most relevant part is shown.

53

1 c l a s s Ma inAc t i v i t y : AppCompatAct iv i ty () , Ac t i v i tyCompat . OnReque s t P e rm i s s i on sRe su l tCa l l b a c k {
2
3 o v e r r i d e fun onReque s t P e rm i s s i on sR e su l t (
4 reques tCode : In t ,
5 p e rm i s s i on s : Array < S t r i ng > ,
6 g r a n t R e s u l t s : I n tA r r ay
7) {
8 i f (r eques tCode == PERMISSION_REQUEST_CAMERA) {
9 / / Reques t f o r camera pe rm i s s i on .

10 i f (g r a n t R e s u l t s . s i z e == 1 && g r a n t R e s u l t s [0] == PackageManager . PERMISSION_GRANTED) {
11 / / Pe rm i s s i on has been g ran t ed . S t a r t camera prev iew A c t i v i t y .
12 l a y ou t . showSnackbar (R . s t r i n g . c amera_pe rmi s s i on_gran t ed , Snackbar . LENGTH_SHORT)
13 s t a r tCamera ()
14 } e l s e {
15 / / P e rm i s s i on r e qu e s t was den i ed .
16 l a y ou t . showSnackbar (R . s t r i n g . camera_permi s s ion_den i ed , Snackbar . LENGTH_SHORT)
17 }
18 }
19 }
20
21 p r i v a t e fun showCameraPreview () {
22 / / Check i f the Camera pe rm i s s i on has been g ran t ed
23 i f (checkSe l fPe rm i s s i onCompa t (Man i f e s t . p e rm i s s i on .CAMERA) ==
24 PackageManager . PERMISSION_GRANTED) {
25 / / Pe rm i s s i on i s a l r e a d y a v a i l a b l e , s t a r t camera prev iew
26 l a you t . showSnackbar (R . s t r i n g . c ame r a _p e rm i s s i on_ av a i l a b l e , Snackbar . LENGTH_SHORT)
27 s t a r tCamera ()
28 } e l s e {
29 / / P e rm i s s i on i s m i s s ing and must be r e qu e s t e d .
30 r eque s tCameraPe rmi s s i on ()
31 }
32 }
33
34
35 p r i v a t e fun reques tCameraPe rmi s s i on () {
36 / / P e rm i s s i on has not been g ran t ed and must be r e qu e s t e d .
37 i f (shou ldShowReques tPe rmi s s ionRa t iona l eCompat (Man i f e s t . p e rm i s s i on .CAMERA)) {
38 / / P rov i de an a d d i t i o n a l r a t i o n a l e to the use r i f the pe rm i s s i on was not g r an t ed
39 / / and the use r would b e n e f i t from a d d i t i o n a l c on t e x t f o r the use o f the pe rm i s s i on .
40 / / D i sp l ay a SnackBar with a bu t ton to r e qu e s t the mi s s ing pe rm i s s i on .
41 l a y ou t . showSnackbar (R . s t r i n g . c ame r a_a c c e s s _ r equ i r ed ,
42 Snackbar . LENGTH_INDEFINITE , R . s t r i n g . ok) {
43 r eque s tPe rmi s s i onsCompa t (a r r ayOf (Man i f e s t . p e rm i s s i on .CAMERA) ,
44 PERMISSION_REQUEST_CAMERA)
45 }
46
47 } e l s e {
48 l a y ou t . showSnackbar (R . s t r i n g . c ame r a _p e rm i s s i on_no t _ a v a i l a b l e , Snackbar . LENGTH_SHORT)
49
50 / / Reques t the pe rm i s s i on . The r e s u l t w i l l be r e c e i v e d in onReque s t P e rm i s s i onRe su l t () .
51 r eque s tPe rmi s s i onsCompa t (a r r ayOf (Man i f e s t . p e rm i s s i on .CAMERA) , PERMISSION_REQUEST_CAMERA)
52 }
53 }
54
55 p r i v a t e fun s t a r tCamera () {
56 . . .
57 }
58 }

Listing 5.7: Request permission example [43]

In the above code, the permission check is implemented in method showCameraPre-
view(), which is assigned to some button on the user interface.

Permission Manifest.permission.CAMERA is checked using the system method
checkSelfPermissionCompat(...) (line 23) (step no. 4), if no permissions are assigned, the
method requestCameraPermission() is called. First, it is checked whether it is neces-
sary to display the extended information on the need to grant rights (line no. 37) (step
no. 5a). Depending on the situation, the extended information is displayed (second at-
tempt) or immediately (first attempt) the system window with the request for grant-
ing rights is displayed (line no. 43 or 51). This uses the method requestPermissionsCom-
pat(arrayOf(Manifest.permission.CAMERA), PERMISSION_REQUEST_CAMERA). After the
user answers, the result is returned to the method onRequestPermissionsResult(...). As-
signing the rights ends the procedure and starts the method which handles the camera
operation, while a message is displayed if the rights are not assigned.

When the camera action is attempted again, the checking procedure begins, with an
extended message about the need to assign permissions displayed.

54

When multiple permissions need to be verified simultaneously in the application,
we pass the matrix with the specified permissions and the so-called requestCode to the
method requestPermissionsCompat(..) to distinguish the types of permissions. We verify
them in method onRequestPermissionsResult() after the user responds and returns to the
activity.

55

56 Chapter 6

Data persistence

Most applications need to save data, e.g. data downloaded from the web or application
settings. When wishing to save data, we should specify the data type to determine how it
is saved. A separate issue is where the data is saved. Here we can save the data in internal
memory, externalmemory (SD card) or an internet location (in particular, a cloud service).
Table no. 6.1 summarises the possibilities for storing data in the device’s memory. One
possible way of accessing the data should be selected based on the data type.

Tab. 6.1: Android storage capabilities [44]
Type of content Access method Permissions

needed
Can other apps
access?

Removed on
app uninstall?

App-specific
files

Files meant for
your app’s use
only

From internal
storage,
getFilesDir() or
getCacheDir()

Never No Yes

Media Shareable
media files
(images, audio
files, videos)

MediaStore API Yes Yes No

Documents and
other files

Other types of
shareable
content,
including
downloaded
files

Storage Access
Framework

None Yes No

App
preferences

Key-value pairs Jetpack
Preferences
library

None No Yes

Database Structured data Room
persistence
library

None No Yes

6.1 App preferences
Often the application adapts to the user by adjusting the colour scheme or setting default
actions. It is also common to allow simple data to be stored that is entered into the
application (e.g. login). Most often, this data is of a simple type. They are limited to
single words or values. Therefore, a dedicated mechanism called Shared Preferences has
been created for storing this type of data. It consists of storing data represented as a key-
value. With the help of this mechanism, we can save simple types (String, Int, Long, Float,
Boolean). By default, the data is stored in the device’s internal memory in the application
data directory (“/data/data/PACKAGE_NAME/shared_prefs/PREFS_NAME.xml”).

1 . . .
2 v a l s h a r e dP r e f = a c t i v i t y ? . g e t S h a r e dP r e f e r e n c e s (g e t S t r i n g (R . s t r i n g . p r e f e r e n c e _ f i l e _ k e y) , Contex t . MODE_PRIVATE)
3 . . .
4 / / Read from Shared P r e f e r e n c e s
5 v a l h i ghSco r e = s h a r e dP r e f . g e t I n t (g e t S t r i n g (R . s t r i n g . s aved_h igh_ s co r e_key) , d e f a u l t V a l u e)
6 . . .
7 / / Wri te to Shared P r e f e r e n c e s
8 with (s h a r e dP r e f . e d i t ()) {
9 p u t I n t (g e t S t r i n g (R . s t r i n g . s aved_h igh_ s co r e_key) , newHighScore)

10 app ly () / / commit () −− synchronous ly
11 }

Listing 6.1: Shared Preferences example

An example of the Shared Preferences API is shown in Listing no:6.1. First, we need
to create an object, referring to the file Shared Preferences (Listing no. 2). With the
object created, we can use a method that reads from this file, e.g. getInt(...). We give it
the name of the key we are looking for and the default value as the second parameter. If
a key is in the file, the value assigned to it will be returned. If there is no key in the file,
a default value will be given to prevent a potential error of missing value. Writing the
value is similar, we use the method putInt(...), the first argument is the name of the key,
followed by the value. It will be added if the key does not exist in the file. If it does exist,
it will be replaced by a new value. The last step is to confirm the save. We can do this
synchronously (commit() or asynchronously apply()).

6.2 Room – Database
In the Android environment, SQLite was chosen as the base database for storing struc-
tured data. SQLite is a database without the need to run a separate RDBMS process. The
contents of the database are stored in a single file. Database security is based on file
system security. Each database in Android is stored in the private memory of each appli-
cation in a dedicated directory (“/data/data/PACKAGE_NAME/databases/DB_NAME”).
Initially, developers directly implemented all elements related to the database using the
android.database.sqlite package. Several classes, including schema, contract class, SQL-
helper class and queries, had to be defined and managed independently. With the pro-
posal to create an application in line with “Android Architecture Components” [15] and
the introduction of the framework ROOM, the use of the database in the application was
greatly simplified. Figure no 6.1 shows the basic model “Android Architecture Compo-
nents”. The whole is based on the MVVM design pattern (to be presented in the next
chapter), and one of its elements is repositories, including a database based on SQLite.
Room framework allows for faster and error-free query creation. Support for integration
with other elements is also important Architecture components like LiveData.

Room has three main components of Room DB:

• Entity

• Dao

• Database

57

Figure 6.1: Diagram of Architecture Components [45]

6.2.1 Entity

Represents a table within the database. Room creates a table for each class that has
@Entity annotation. The class fields correspond to columns in the table. Therefore,
the entity classes tend to be small model classes that don’t contain any logic. The
use of annotations significantly speeds up code development. We have a list of pos-
sibilities on the webpage https://developer.android.com/reference/androidx/
room/package-summary#annotations. The following are often used:

• @PrimaryKeys – as its name indicates, this annotation points to the primary key
of the entity. autoGenerate — if set to true, then SQLite will generate a unique id
for the column,

• @ColumnInfo – allows specifying custom information about column,

• @Ignore — field will not be persisted by Room, e.g. picture.

1 @Entity
2 da t a c l a s s Person (
3 @PrimaryKey (au toGene ra t e = t r u e)
4 var u id : I n t ? = n u l l
5
6 @ColumnInfo (name = ” f i r s t _ n ame ”)
7 var f i r s tName : S t r i n g
8
9 @ColumnInfo (name = ” l a s t_name ”)

10 var las tName : S t r i n g
11)

Listing 6.2: Entity exampl [45]

Listing no. 6.2 contains an example definition of a table. Line no. 1 defines that the
class defined below is a table. At the same time, this is the definition of a class of type

58

data (Line no. 2). It contains 3 columns. Column uid is the primary key, and the system
automatically generates its value (always ascending). The second column in the database
will be named first_name, andwhen referring to the class, wewill use the name firstName,
similarly to the third column relating to the surname.

6.2.2 DAO

DAOs – Data Access Object – are responsible for defining the methods that access the
database. In the initial SQLite, we use the Cursor objects. With Room, we don’t need all
the Cursor related code and can define our queries using annotations in the Dao class.
DAO provides the methods that the rest of the app uses to interact with data in the tables.

1 @Dao
2 i n t e r f a c e PersonDao {
3
4 / / The c o n f l i c t s t r a t e g y d e f i n e s what happens ,
5 / / i f t h e r e i s an e x i s t i n g en t ry .
6 / / The d e f a u l t a c t i o n i s ABORT .
7 @Inser t (o nCon f l i c t = OnCon f l i c t S t r a t e g y . REPLACE)
8 fun i n s e r t (Person person)
9

10 / / Update mu l t i p l e e n t r i e s with one c a l l .
11 @Update
12 fun upda t ePe r sons (pe r sons : L i s t <Person >)
13
14 / / S imple query t h a t does not t ake pa rame t e r s and r e t u r n s no th ing .
15 @Query (”DELETE FROM person ”)
16 fun d e l e t e A l l ()
17
18 / / S imple query wi thout pa rame t e r s t h a t r e t u r n v a l u e s .
19 @Query (” SELECT ∗ from person ORDER BY lastName ASC”)
20 fun g e tA l l P e r on s () : L i s t <Person >
21
22 / / Query with paramete r t h a t r e t u r n s a s p e c i f i c person or pe r sons .
23 @Query (” SELECT ∗ FROM person WHERE la s t_name LIKE : las tName ”)
24 fun f i n dP e r s on s (las tName : S t r i n g ?) : L i s t <Person >
25 }

Listing 6.3: @Dao exampl [45]

Listing no. 6.3 contains an example definition @Dao. Line no. 1 defines that the class
defined below is of type DAO. It should be added that the class defining the queries is
an interface. The class contains the definition of 5 methods representing queries to the
database. The implementation of this interface is created automatically based on the SQL
queries defined as @Query, the add (annotation @Insert) and update operations for the
data@Update are also automatically created.

6.2.3 Database

It contains the database holder and is the main access point for the underlying connec-
tion to your app’s persisted relational data. The implementation is an abstract class that
extends class RoomDatabase, is decorated with annotation @Database and lists all de-
fined tables. Objects are also defined in the body of the class DAO. The conditions that
an annotated class must satisfy @Database:

• It must be an abstract class that extends RoomDatabase,

• Must specify a list of all entities within the annotation,

• It must contain an abstract method that references the annotated class @DAO,

• At runtime, we shall acquire an instance of Database by calling
Room.databaseBuilder() or Room.inMemoryDatabaseBuilder().

59

1 @Database (e n t i t i e s = a r rayOf (Person : : c l a s s) , v e r s i o n = 1 , exportSchema = f a l s e)
2 p u b l i c a b s t r a c t c l a s s Pe r sonDatabase : RoomDatabase {
3
4 a b s t r a c t fun personDao () : PersonDao ;
5
6 p r i v a t e s t a t i c Pe r sonDatabase INSTANCE ;
7 companion o b j e c t {
8
9 @Vo l a t i l e

10 p r i v a t e var INSTANCE : Per sonDatabase ? = n u l l
11
12 fun g e tD a t a s e t C l i e n t (c on t e x t : Contex t) : Pe r sonDatabase {
13 i f (INSTANCE != n u l l) r e t u r n INSTANCE ! !
14
15 synch ron i z ed (t h i s) {
16 INSTANCE = Room
17 . d a t a b a s e Bu i l d e r (con t ex t , Pe r sonDatabase : : c l a s s . j ava , ” p e r s on_da t a b a s e ”)
18 . f a l l b a c kT oDe s t r u c t i v eM i g r a t i o n ()
19 . b u i l d ()
20
21 r e t u r n INSTANCE ! !
22 }
23 }
24
25 }
26 }

Listing 6.4: @Database exampl [45]

Listing no. 6.4 contains an example definition @Database. According to the previously
mentioned conditions, this code includes all required conditions. The example class is
abstract (Line no. 2), Line no. 1 contains the entity information, Line no. 4 has the class
information from @Dao. Access to the database instance is implemented via method
Room.databaseBuilder() (Line no. 11). It should be added that in this class, we define the
name of the database, it is “person_database”, which is one of the arguments of the
method Room.databaseBuilder().

6.2.4 Repository – How manage Database

Having defined the elements that constitute access to the database from the framework
Room, the last step is to use them. For this purpose, it is advisable to create a class
Repository that stores access to the data, and through it, we can manage the database.
Direct access is also possible, but such an architecture is not recommended.

60

1 c l a s s P e r s onRepo s i t o r y {
2 companion o b j e c t {
3
4 var p e r s ona lDa t a b a s e : P e r s ona lDa t a b a s e ? = n u l l
5 var personDao : PersonDao ? = n u l l
6
7 fun i n i t i a l i z e D B (c on t e x t : Contex t) : Pe r sonDatabase {
8 r e t u r n Per sonDatabase . g e t D a t a s e t C l i e n t (c on t e x t)
9

10 }
11
12 fun i n s e r tD a t a (c on t e x t : Context , person : Person) {
13
14 pe r s ona lDa t a b a s e = i n i t i a l i z e D B (c on t e x t)
15
16 Corou t ineScope (IO) . l aunch {
17
18 pe r sonDa tabase ! ! . personDao () . i n s e r t (person)
19 }
20
21 }
22
23 fun g e tA l l P e r s o n s (c on t e x t : Contex t) : L iveData < L i s t <Person > >?{
24
25 pe r sonDa tabase = i n i t i a l i z e D B (c on t e x t)
26 r e t u r n pe r sonDa tabase ! ! . personDao () . g e tA l l P e r s o n s ()
27
28 }
29
30 }
31
32
33 . . .
34 }

Listing 6.5: Repository exampl [45]

Creating a class Repository allows us to manage the database centrally. We have a col-
lection of all available queries and helper classes.

The next step is to call the methods from the created class Repository. The frame-
work Room is part of the model “Android Architecture Components”, and using it with
the MVVM pattern is recommended. Listing 6.6 shows the use of the previously created
class PersonRepository in a class that is one of the elements of MVVM.

1
2 c l a s s PersonViewModel : ViewModel () {
3
4 fun i n s e r tD a t a (c on t e x t : Context , person : Person) {
5 P e r s onRepo s i t o r y . i n s e r t (con t ex t , person)
6 }
7
8 fun g e tA l l P e r s o n s (c on t e x t : Contex t) : L iveData < L i s t <Person > >?{
9 r e t u r n Pe r s onRepo s i t o r y . g e tA l l P e r s o n s (c on t e x t)

10 }
11
12 }

Listing 6.6: Using the repository class witch MVVM [45]

61

62 Chapter 7

Design pattern MVVM

When creating applications, we rarely use single components. We often develop applica-
tions with multiple components sharing the same data between them. In earlier chapters,
the life cycles of individual components were presented. From a data management point
of view, the fundamental problem is to inform components about changing data. The pre-
vious one showed how to access data in particular data stored in a database. The initial
pattern used is to implement actions that depend on the component. The component it-
self takes care of data updates. However, this pattern can result in poor code organisation
and the appearance of bugs and is practically only effective for applications with single
functionalities. When data changes in different activities, this approach is ineffective and
can lead to delays and problems with displaying current data. Another approach is to use
a pattern in which individual components react to changing data and are sensitive to the
life cycle of other components. For Android, such a pattern is Model-View-ViewModel,
abbreviated as MVVM, which is part of “Android Architecture Components” [15].

The model MVVM introduces three layers:

• Model – This layer is responsible for the abstraction of data sources. Model and
ViewModel work together to retrieve and store data. Such a function can be per-
formed by a database together with a framework Room.

• View – The function of this layer is to inform ViewModel about user actions. This
layer observes ViewModel and does not contain any application logic.

• ViewModel- Deals with providing model data for the view layer and taking action
on a triggered event from the view.

Figure 7.1: Android MVVM patern [16]

Its logic is minimised by using a data-binding strategy in the view layer. The code
becomes more structured and open to modification, and testing is easier. The idea behind

the MVVM pattern is that the view layer observes (Observer pattern) the changing data
in the model layer and reacts to the changes through a data binding mechanism.

The Android Jetpack introduces facilities for creating an application that follows the
MVVM pattern, in particular, it provides classes:

• ViewModel,

• LiveData, MutableLiveData, MediatorLiveData,

• Lifecycle.

The below contains good practices for working with components in applications
with the MVVM pattern.

UI controllers (activities and fragments) should be as simple as possible. They should
not attempt to acquire their data. The UI controller is responsible for updating views
when data changes or notifying ViewModel classes of user actions.

In classes that areViewModel, it is recommended to observe objects using LiveData.
This will allow the user interface to be informed of changes.

It would help if you wrote data-driven user interfaces where the controller UI is
responsible for updating views when data changes. The ViewModel should be notified
of user actions.

The data logic should be placed in class ViewModel. The ViewModel should serve
as a link between the UI controller and the rest of the application. However, e.g. IO oper-
ations (e.g. download file) should not be implemented in the VM class. Instead, creating
separate components that retrieve the data and return the result to the UI controller is
recommended. In addition, they must be executed in a non-UI thread. It is recommended
to use data binding so that the interface between views and the UI controller is transpar-
ent and the views become more declarative with a minimum of update code. To manage
long-running tasks, use Kotlin coroutines [46], which can be executed asynchronously.

7.1 ViewModel
The main task of the class being ViewModel is to maintain information (caching) about
the state values of objects on the user interface. It allows the state to persist regardless of
the current activity and, when the user returns to the interface associated with a given
ViewModel, to provide the current values. The second function ViewModel is to pro-
vide access to the application’s business logic. In addition, ViewModel is responsible for
handling events and forwarding them to other layers.

An example of an implementation was presented in the previous chapter in Listing
no. 6.6. The example class extends class ViewModel. According to the adopted methodol-
ogy, this class contains all data operations. Using LiveData, it receives all changes to the
associated objects. Listing no. 7.1 shows the code belonging to the user interface layer,
which uses the stored data through ViewModel. It is also important that many different
UIs can access the same VM.

63

1 c l a s s Ma inAc t i v i t y : AppCompatAct iv i ty () {
2
3 l a t e i n i t var personViewModel : PersonViewModel
4 l a t e i n i t var c on t e x t : Contex t
5 . . .
6 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
7 super . onCrea te (s a v e d I n s t a n c e S t a t e)
8 se tConten tV iew (R . l a y ou t . a c t i v i t y _ma i n)
9

10 c on t e x t = th i s@Ma inAc t i v i t y
11
12 personViewModel = ViewModelProvider (t h i s) . g e t (PersonViewModel : : c l a s s . j a v a)
13
14 btnAddPerson . s e tOnC l i c k L i s t e n e r {
15 . . .
16 personViewModel . i n s e r tD a t a (con t ex t , person)
17 . . .
18 }
19 }
20
21 b tnGe tPe r sons . s e tOnC l i c k L i s t e n e r {
22 . . .
23
24 loginViewModel . g e tA l l P e r s o n s () . ob s e rve (t h i s , new Observer <User > () {
25 @Override
26 p u b l i c vo id onChanged (@Nul lab le Person da t a) {
27 / / update u i .
28
29 }
30 }) ;
31 }
32 }
33 }

Listing 7.1: ViewModel Example

7.2 LiveData
Class LiveData – an observable data holder class allows you to create applications that
are sensitive to the life cycles of components such as fragments or activities. It notifies
the observable of changing data while observing lifecycle changes, updating only active
observables. There are subclasses in LiveData that are useful for their properties when
updating the UI [47]:

• LiveData – is immutable by default. Using LiveData, we can only observe the data
and cannot set the data.

• MutableLiveData – subclass of LiveData. In MutableLiveData, we can observe and
set the values using postValue() and setValue() methods (the former being thread-
safe) so that we can dispatch values to any live or active observers.

• MediatorLiveData – can observe other LiveData objects, such as sources and react
to their onChange() events. MediatorLiveData will give us control over when we
want to perform an action in particular or to propagate an event.

Advantages of using LiveData:

• Removes the leaks caused by the interfaces/callbacks that send results to the UI
thread.

• It de-couples tight integration between data, mediator, and the UI layers.

• Always up to date with the latest data

• Sharing resources, e.g. Extending LiveData

64

7.2.1 Using LiveData

We can illustrate the use of LiveData in the following steps, with reference in brackets
to previously shown examples:

1. Create a LiveData instance in your ViewModel class to hold the data. (Listing
no. 6.6, Line no. 8)

2. Set the data in LiveData. (Listing no. 6.5, Line no. 23–28)

3. Return the LiveData. (Listing no. 6.6, Line no. 8–10)

4. Observe the data with the help of the Observer() function.(Listing no. 7.1, Line
no. 24–30)

65

66 Chapter 8

Networking

When developing applications, there is often a need to use network connections. Net-
work requests are used to download or update data. The connectivity of mobile devices
is very large, and we can distinguish between media connections:

• Wi-Fi networks,

• cellular networks,

• Bluetooth,

• NFC.

For internet connections, the first two are most commonly used. When using net-
works, special attention should be paid to the aspect of energy saving as well as the use
of an unmetered network (e.g. WiFi) to download significant portions of data.

The use of the network can generate considerable costs, as well as being a particular
threat to the user’s privacy, which is why permission to use the network is necessary,
and the perform network operations and read network status in your application, your
manifest must include the permissions Listing no. 8.1.

1 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . INTERNET” / >
2 <uses − pe rm i s s i on andro id :name= ” andro id . p e rm i s s i on . ACCESS_NETWORK_STATE” / >

Listing 8.1: Define permissions

Before connecting, it is good practice to check that the device is connected to the
Internet. Network checks must be performed before any download operation.

1 p r i v a t e fun isNetworkConnected () : Boolean {
2 v a l c onnec t i v i t yManage r = g e t S y s t emSe r v i c e (Contex t . CONNECTIVITY_SERVICE) as Connec t i v i tyManager
3 v a l a c t i veNe twork = connec t i v i t yManage r . a c t i veNe twork
4 v a l n e two r kC a p a b i l i t i e s = connec t i v i t yManage r . g e tN e two r kC ap a b i l i t i e s (a c t i veNe twork)
5 r e t u r n n e two r kC a p a b i l i t i e s != n u l l && n e two r kC a p a b i l i t i e s . h a sC a p a b i l i t y (N e two r kCap a b i l i t i e s . NET_CAPABILITY_INTERNET)
6 }

Listing 8.2: Checking network exampl [49]

Listing no. 8.2 contains a method that returns whether a network is available. Line no. 2
fetches an instance of ConnectivityManager, and with its help, we check the network
properties, including whether the available networks are connected to the Internet (Line
no. 5). This simple method will allow us to avoid trouble considerably and at the same
time using it will allow us to inform the user about the need to connect to the network.

Performing network operations requires them to be completed in a separate thread
not to burden the main thread. It is dedicated to the user interface. Currently, most ap-
plications use a given service’s REST API [52] to retrieve data. Sometimes, however, it

is necessary to retrieve a file from the server in the traditional way. The HTTP/HTTPS
protocol is then preferred. This makes it quite challenging to create communication with
full support. This is why we most often use dedicated libraries to handle network con-
nections. In the Android environment, we have many libraries that facilitate the creation
of network connections, such as Retrofit, Volley, OkHttp (HTTP + HTTP /2). It is also
possible to use a native solution, i.e. to use a class HttpUrlConnection. In the following
subsections, a description of the use of the library Retrofit [48] and class HttpUrlCon-
nection will be presented.

8.1 HTTP connections using HttpUrlConnection
UsingHttpUrlConnection, we do not have to specify any dependencies, we have control
over the connection process, but at the same time, we have to handle the connection
properly, especially the cancellation of the connection. This often causes implementation
problems. The downloaded data is passed as RAW to InputStream, and later decoding is
necessary. We also need to ensure that the application runs in a separate thread. Listing
no. 8.3 contains the activity to retrieve the web page data. In this case, it is a graphic
image. In the example application, ensuring that the data is fetched in a separate thread
is implemented through Kotlin coroutines. This mechanism allows for multitasking. To
specify where the coroutines should run, Kotlin provides three dispatchers that you can
use:

• Dispatchers.Main – Use this dispatcher to run a coroutine on the main Android
thread. This should be used only to interact with the UI and perform quick work.

• Dispatchers.IO – This dispatcher is optimised to perform disk or network I/O out-
side the main thread.

• Dispatchers.Default –This dispatcher is optimised to perform CPU-intensive work
outside the main thread.

In the example Listing no. 8.3, we wrapped our network call in the IO dispatchers
(Line no. 19–21). Additionally, for the function to be executed in a separate thread, it must
bemarked as suspend [51] Line no. 32. Line no. 60 contains a reference to changing an ob-
ject on the screen. Such changes must be executed in the main thread (i.e. the UI thread),
the call to this method is preceded by /textitCoroutineScope(Dispatchers.Main).launch().
Using the Coroutine mechanism allows us to change the thread as required.

67

1
2 c l a s s Ma inAc t i v i t y : AppCompatAct iv i ty () {
3 l a t e i n i t var bu t ton : But ton
4 l a t e i n i t var imageView : ImageView
5
6
7 p r i v a t e v a l i oScope = Corou t ineScope (D i s p a t c h e r s . IO)
8 o v e r r i d e fun onCrea te (s a v e d I n s t a n c e S t a t e : Bundle ?) {
9 super . onCrea te (s a v e d I n s t a n c e S t a t e)

10 se tConten tV iew (R . l a y ou t . a c t i v i t y _ma i n)
11
12 bu t ton = f indViewById (R . i d . bu t ton)
13 imageView = f indViewById (R . i d . imageView)
14
15 v a l s e r v i c e = G i t hubAp i S e r v i c e . F a c t o r y . c r e a t e ()
16
17 bu t ton . s e tOnC l i c k L i s t e n e r {
18 i f (i sNetworkConnected ()) {
19 i oScope . l aunch {
20 down loadF i l e (” h t t p : / / i o s c s . zu t . edu . p l / f i l e a dm i n / image / Opensource . svg . png ”) }
21 }
22 }
23 }
24
25 p r i v a t e fun isNetworkConnected () : Boolean {
26 v a l c onnec t i v i t yManage r = g e t S y s t emSe r v i c e (Contex t . CONNECTIVITY_SERVICE) as Connec t i v i tyManager
27 v a l a c t i veNe twork = connec t i v i t yManage r . a c t i veNe twork
28 v a l n e two r kC a p a b i l i t i e s = connec t i v i t yManage r . g e tN e two r kC ap a b i l i t i e s (a c t i veNe twork)
29 r e t u r n n e two r kC a p a b i l i t i e s != n u l l && n e two r kC a p a b i l i t i e s . h a sC a p a b i l i t y (N e two r kCap a b i l i t i e s .

NET_CAPABILITY_INTERNET)
30 }
31
32 suspend fun down loadF i l e (i n pu tU r l : S t r i n g) {
33 v a l u r l = URL (i n pu tU r l)
34 v a l h t t p C l i e n t = u r l . openConnect ion () as HttpURLConnect ion
35 h t t p C l i e n t . do Input = t r u e
36 h t t p C l i e n t . connectT imeout = 5000
37 h t t p C l i e n t . readTimeout = 5000
38
39 i f (h t t p C l i e n t . responseCode == HttpURLConnect ion . HTTP_OK) {
40 t r y {
41 v a l s t ream = Bu f f e r e d I npu t S t r e am (h t t p C l i e n t . i npu tS t r eam)
42 readS t ream (s t ream)
43
44 } c a t ch (e : Excep t i on) {
45 e . p r i n t S t a c kT r a c e ()
46 } f i n a l l y {
47 h t t p C l i e n t . d i s c onn e c t ()
48 }
49 } e l s e {
50 Log . v (” E r r o r in Comuniact ion ” , ”ERROR”+ h t t p C l i e n t . responseCode)
51 }
52 }
53
54 p r i v a t e fun readS t ream (inpu tS t r eam : Inpu tS t r eam) {
55 / / data −dependent imp l emen ta t i on o f the r e a d e r
56
57 v a l b i tmapImage = B i tmapFac to ry . decodeStream (inpu tS t r eam)
58
59 Corou t ineScope (D i s p a t c h e r s . Main) . l aunch () {
60 imageView . se t ImageB i tmap (bi tmapImage) }
61 }
62 }

Listing 8.3: Example of use of the class HttpURLConnection

The class methods HttpUrlConnection allow us to define connection parameters, in-
cluding the setting of times, the definition of authorisation or the use of different types
of queries. However, this class, despite its range of possibilities, is less frequently used
than other libraries, notably Retrofit.

8.2 HTTP connections using Retrofit
Retrofit is an Android and Java library that excels at retrieving and uploading structured
data, such as JSON and XML. This library makes HTTP requests using OkHttp, another
library from Square.

Downloaded data from the internet is very often serialised, e.g. in XML, JSON for-
mat. Retrofit can serialise and deserialise data using various libraries:

68

• Gson,

• Jackson,

• Moshi,

• Protobuf,

• Wire,

• Simple XML.

This gives the programmermany possibilities when choosing serialisation using this
library. In addition, the library deals with thread handling.

Like the other libraries, it is first necessary to add information about it to the de-
pendencies in file build.gradle in the app module (Listing no. 8.4), and second, we add the
GSON library for format deserialisation JSON.

1 imp lemen ta t i on ’ com . squareup . r e t r o f i t 2 : r e t r o f i t : $VERSION$ ’
2 imp l emen ta t i on ’ com . squareup . r e t r o f i t 2 : c onve r t e r −gson : $VERSION$ ’

Listing 8.4: Retrofit depedencies

Using Retrofit, we first declare the interface, which defines the HTTP method,
address, arguments, and response type. At Line no. 11–19, an instance of the ser-
vice is created that queries the defined URL. In this case, we use the API from page
https://api.github.com/. The complete documentation can be found at https:
//docs.github.com/en/rest.

1 i n t e r f a c e G i t hubAp i S e r v i c e {
2
3 @GET(” s e a r ch / u s e r s ”)
4 fun s e a r ch (@Query (” q ”) query : S t r i ng ,
5 @Query (” page ”) page : I n t = 1 ,
6 @Query (” per_page ”) perPage : I n t = 2 0) : L i s t < Re su l t >
7
8 / ∗ ∗
9 ∗ Companion o b j e c t to c r e a t e the G i t hubAp i S e r v i c e

10 ∗ /
11 companion o b j e c t F a c t o r y {
12 fun c r e a t e () : G i t hubAp i S e r v i c e {
13 v a l r e t r o f i t = R e t r o f i t . B u i l d e r ()
14 . a ddConve r t e r F a c t o ry (GsonConver t e rFac to ry . c r e a t e ())
15 . b a s eU r l (” h t t p s : / / a p i . g i t hub . com / ”)
16 . b u i l d ()
17
18 r e t u r n r e t r o f i t . c r e a t e (G i t hubAp i S e r v i c e : : c l a s s . j a v a) ;
19 }
20 }
21 }

Listing 8.5: Definig query using Retrofit

Listing no. 8.5 presents two example GET requests.

1 c l a s s S e a r c hRepo s i t o r y (v a l a p i S e r v i c e : G i t hubAp i S e r v i c e) {
2
3 fun s e a r chUs e r s (l o c a t i o n : S t r i ng , l anguage : S t r i n g) : L s i t < Re su l t > {
4 r e t u r n a p i S e r v i c e . s e a r ch (query = ” l o c a t i o n : $ l o c a t i o n language : $ l anguage ”)
5 }
6
7 fun s e a r chUs e r s (username : S t r i n g) : L i s t < Re su l t > {
8 r e t u r n a p i S e r v i c e . s e a r ch (query = username)
9 }

10 }

Listing 8.6: Repository example

69

The data that will be returned during a query is specific data models, which should
conform to the provider-provided data model.

1 da t a c l a s s User (
2 v a l l o g i n : S t r i n g ,
3 v a l i d : Long ,
4 v a l u r l : S t r i n g ,
5 v a l h tm l _u r l : S t r i n g ,
6 v a l f o l l ow e r s _ u r l : S t r i ng ,
7 v a l f o l l ow i n g _ u r l : S t r i ng ,
8 v a l s t a r r e d _ u r l : S t r i ng ,
9 v a l g i s t s _ u r l : S t r i n g ,

10 v a l type : S t r i n g ,
11 v a l s c o r e : Double
12)
13 da t a c l a s s R e s u l t (
14 v a l t o t a l _ c o u n t : I n t ,
15 v a l i n c omp l e t e _ r e s u l t s : Boolean ,
16 v a l i t ems : L i s t <User >
17)

Listing 8.7: Data classes – Retrofit example

The final step is to use the created classes. Listing no. 8.8 shows an example call to
the search method. In line no. 1, we define the local object with the help we will make
the query. Line no. 4 shows the method call searchwith the parameter. An asynchronous
query is started by calling the method enqueue. The result will be returned in the method
callbacks. In method onReponse, line no. 7–10, the received value will be returned. In case
of a communication error, wrong request, or no response, it will be handled in method
onFailure.

1 v a l s e r v i c e = G i t hubAp i S e r v i c e . F a c t o r y . c r e a t e ()
2
3 bu t ton . s e tOnC l i c k L i s t e n e r {
4 v a l s e a r chReque s t = s e r v i c e . s e a r ch (” rmac i a s z c zyk ”)
5
6 s e a r chReque s t . enqueue (o b j e c t : Ca l l back < L i s t < Re su l t > >{
7 o v e r r i d e fun onResponse (c a l l : Ca l l < L i s t < Re su l t > > , r e sponse : Response < L i s t < Re su l t > >) {
8 v a l u s e r P r o p e r t i e s = r e sponse . body ()
9 Log . v (” R e s u l t { u s e r P r o p e r t i e s } ”)

10 }
11
12
13 o v e r r i d e fun on F a i l u r e (c a l l : Ca l l < L i s t < Re su l t > > , t : Throwable) {
14 Log . i (Ma inAc t i v i t y : : c l a s s . simpleName , ” on FAILURE ! ! ! ! ”)
15 })
16 }

Listing 8.8: Call retrofit method

Retrofit allows the developer to focus on the purpose of the communication rather
than its handling. MVVM supports this library, which makes it recommended for han-
dling network connections, particularly retrieving data using queries REST.

70

Chapter 9 71

Summary

This publication contains information about mobile programming applications in the
most popular mobile operating system – Android. The publication has been prepared
as support material for classes in the subject of Mobile Application Development. The
publication can be used by lecturers, students and pupils during classes and by people
who want to expand their knowledge of Android’s programming basics. The book uses
the official Android documentation along with some of the code. The timeliness of the
included descriptions is as of June 2022. The development of the system means that some
of the material may become outdated over time. In particular, a new approach to solving
given issues may be proposed. Developing mobile applications for Android is possible
with free software released under an open source licence – Android Studio. Knowledge of
object-oriented programming and the basics of the Kotlin language is also recommended.
These minor requirements mean that mobile app programming can be for everyone. It is
also worth noting that the system’s popularity is already so high that we can successfully
write an Android is everywhere.

72

Bibliography

[1] Mobile Operating System Market Share Worldwide,
https://gs.statcounter.com/os-market-share/mobile/worldwide, 03.2022

[2] Mobile Vendor Market Share Worldwide,
https://gs.statcounter.com/vendor-market-share/mobile/worldwide, 03.2022

[3] Simon Kemp, DIGITAL 2022: GLOBAL OVERVIEW REPORT,
https://datareportal.com/reports/digital-2022-global-overview-report, 26.01.2022

[4] OHA1, http://www.openhandsetalliance.com/press_110507.html

[5] OHA1, http://www.openhandsetalliance.com/press_111207.html

[6] OHA1, https://pl.wikipedia.org/wiki/G1_(telefon)

[7] OHA1, https://en.wikipedia.org/wiki/Android_version_history

[8] Kotlin docs, https://kotlinlang.org/docs/home.html

[9] A modern programming language that makes developers happier,
https://kotlinlang.org/#why-kotlin

[10] Mark L. Murphy, Elements of Kotlin, https://commonsware.com/Kotlin/,
CommonsWare 2021

[11] Android source https://source.android.com/

[12] Android source https://cs.android.com/

[13] Android studio https://developer.android.com/studio

[14] Meet Android Studio, https://developer.android.com/studio/intro

[15] Guide to app architecture,
https://developer.android.com/topic/architecture

[16] Activity,
https://developer.android.com/reference/android/app/Activity

[17] App Manifest Overview, https:
//developer.android.com/guide/topics/manifest/manifest-intro

[18] Fragment lifecycle,
https://developer.android.com/guide/fragments/lifecycle

[19] Navigation Editor, https://developer.android.com/guide/navigation/
navigation-getting-started#nav-editor

[20] Pass data between destinations, https:
//developer.android.com/guide/navigation/navigation-pass-data

[21] Services overview,
https://developer.android.com/guide/components/services

[22] Implementing the lifecycle callbacks, https://developer.android.com/
guide/components/services#LifecycleCallbacks

[23] Bound services overview,
https://developer.android.com/guide/components/bound-services

[24] Build a UI with Layout Editor,
https://developer.android.com/studio/write/layout-editor

[25] ViewGroup,
https://developer.android.com/reference/android/view/ViewGroup

[26] ConstraintLayout, https://developer.android.com/reference/androidx/
constraintlayout/widget/ConstraintLayout

[27] ConstraintLayout,
https://developer.android.com/codelabs/constraint-layout

[28] ConstraintLayout, https://developer.android.com/guide/topics/
providers/content-provider-basics

[29] Uniform Resource Identifiers (URI): Generic Syntax,
https://www.ietf.org/rfc/rfc2396.txt

[30] Implementing ContentProvider MIME Types, https://developer.android.
com/guide/topics/providers/content-provider-creating#MIMETypes

[31] Content Providers in Android with Example, https://www.geeksforgeeks.
org/content-providers-in-android-with-example/

[32] Content Providers in Android with Example, https:
//developer.android.com/guide/topics/providers/content-providers

[33] Material Design 3, https://m3.material.io/

[34] Material Design, https://material.io/

[35] Material 3 Design Kit,
https://www.figma.com/community/file/1035203688168086460

[36] Material Design color tool,
https://material.io/resources/color/#!/?view.left=0&view.right=0

[37] Material Symbols and Icons, https://fonts.google.com/icons

73

[38] Gra Pokémon GO, Niantic, Inc., https://play.google.com/store/apps/
details?id=com.nianticlabs.pokemongo

[39] Sensors Overview, https:
//developer.android.com/guide/topics/sensors/sensors_overview

[40] Request location permissions,
https://developer.android.com/training/location/permissions

[41] Request location updates,
https://developer.android.com/training/location/request-updates

[42] Request location updates,
https://developer.android.com/training/permissions/requesting

[43] Permissions codelab Repository, https://github.com/android/
permissions-samples/tree/main/RuntimePermissionsBasicKotlin

[44] Data and file storage overview,
https://developer.android.com/training/data-storage

[45] Android’s Room in Kotlin ft. MVVM Architecture and Coroutines,
https://github.com/umangburman/MVVM-Room-Kotlin-Example/

[46] Kotlin coroutines on Android,
https://developer.android.com/kotlin/coroutines

[47] Introduction to LiveData in Android, https:
//www.innominds.com/blog/introduction-to-livedata-in-android

[48] Retrofit – A type-safe HTTP client for Android and Java,
https://square.github.io/retrofit/s

[49] Android Networking With Kotlin Tutorial: Getting Started,
https://www.raywenderlich.com/
6994782-android-networking-with-kotlin-tutorial-getting-started

[50] Android Networking With Kotlin Tutorial: Getting Started,
https://github.com/julpanucci/Kotlin-Retrofit

[51] Composing suspending functions,
https://kotlinlang.org/docs/composing-suspending-functions.html

[52] Representational state transfer,
https://en.wikipedia.org/wiki/Representational_state_transfer

74

75

List of Figures

1.1: Mobile Users [3] . 7
1.2: Mobile Time by Activity [3] . 8
1.3: Android Code Search [12] . 11
2.1: Android Studio licence . 13
3.1: Activity Lifeycle [16] . 21
3.2: Fragment Lifeycle [18] . 24
3.3: Navigation graph – tools view . 27
3.4: Service lifecycle [21] . 31
3.5: Relationship between content provider and other components [28] 35
4.1: Layout Editor [24] . 37
4.2: Example Login Layout . 40
4.3: Structure of the Cards component [34] . 42
4.4: Example use of the component (Cards) . 45
4.5: Examples of colour sets for apps proposed by Google in 2014 [34] 46
5.1: Workflow for declaring and requesting runtime permissions on Android [42] 53
6.1: Diagram of Architecture Components [45] 58
7.1: Android MVVM patern [16] . 62

76

List of Tables

1.1: Mobile Operating System Market Share Worldwide, March 2022 [1] 8
1.2: Mobile Vendor Market Share Worldwide, March 2022 [2] 9
1.3: Android versions [7] . 10
5.1: Sensor types supported by the Android platform [39] 49
6.1: Android storage capabilities [44] . 56

77

Listings

3.1 Example of implicit intent – View a map 18
3.2 Skeleton of the AndroidManifest.xml file 19
3.3 Manifest file of the sample application 19
3.4 Activity lifecycle calback . 20
3.5 Defining dependencies . 23
3.6 Example Fragment . 24
3.7 Define place for fragment (any) . 25
3.8 Add a fragment programmatically . 25
3.9 Adding dependencies . 26
3.10 Navigation graph – XML . 27
3.11 Navigation navhost . 28
3.12 Calling a navigation action from method onClick(). 28
3.13 Set up Safe Args . 29
3.14 Navigation Arguments . 29
3.15 Navigation action arguments . 29
3.16 Calling the navigation action from the method onClick() 30
3.17 Example of service declaration . 32
3.18 Skeleton service [22] . 32
3.19 Launching the service . 32
3.20 Declaration of receiver in AndroidManifest.xml 33
3.21 Example Broadcast Receiver class . 33
3.22 Context-registered receivers . 33
3.23 Sending bradcast – example . 34
3.24 Declaration of receiver with permission in AndroidManifest.xml 34
4.1 Example of a variant directory structure with layouts 37
4.2 Example of Login layout . 39
4.3 Definition of button placement . 41
4.4 Example of a layout for a component (Cards) 44
5.1 Skeleton using the Sensor Framework . 48
5.2 Defining permissions in the AndroidManifest.xml file 50
5.3 Defining Google Play location services 51
5.4 Using fused location provider . 51
5.5 Get location from provider . 51
5.6 Using fused location provider . 52
5.7 Request permission example [43] . 54
6.1 Shared Preferences example . 57
6.2 Entity exampl [45] . 58

6.3 @Dao exampl [45] . 59
6.4 @Database exampl [45] . 60
6.5 Repository exampl [45] . 61
6.6 Using the repository class witch MVVM [45] 61
7.1 ViewModel Example . 64
8.1 Define permissions . 66
8.2 Checking network exampl [49] . 66
8.3 Example of use of the class HttpURLConnection 68
8.4 Retrofit depedencies . 69
8.5 Definig query using Retrofit . 69
8.6 Repository example . 69
8.7 Data classes – Retrofit example . 70
8.8 Call retrofit method . 70

78

Mobile Application Development
Study material

Author: dr inż. Radosław Maciaszczyk
West Pomeranian University of Technology in Szczecin
Publisher: Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Graphic editing and typesetting: Radosław Maciaszczyk with style by Jiří Rybička
Year of publishing: 2022
First edition
Number of pages: 80
ISBN 978-80-7509-890-0 (online ; pdf)
DOI: https://doi.org/10.11118/978-80-7509-890-0

